
P-NET Compact
Joachim Bürmann, IFTOOLS GmbH

September 17, 2020

T
he P-NET protocol is a field-bus proto-

col with Multi-Master and Multi-Net ca-
pabilities and mainly used in applications

with an average time requirement of several mil-
liseconds. P-NET uses a ring topology based on
RS485 with a maximum number of 125 bus partic-
ipants, thereof up to 32 masters. The bus access
is handled by a token management. The data
transmission is asynchron with 76800 bit/sec. A
P-NET ring can contains other rings (Multi-Net
ability).

Bus access via token management

Only the masters have the right to access the bus by
themselves. A slave is only allowed to answer one mas-
ter request at one time (immediate response). P-NET
uses a token based mechanism to handle the bus ac-
cess for the masters. Every request must be answered
by the slave in a specific time given by the token man-
agement. Afterwards the token is passed to the next
master.
The tokens are managed with the help of two coun-
ters implemented in the master devices. One counter
increases it’s value with the bit rate when the bus is
idle (idle-bus-bit-period counter). The master device
counters are set to 0 with every start of a new data
transmission (bus access).
When the counter reaches 40 another counter - the
access counter - is incremented. If there is no mas-
ter with the need of the access token (maybe there is
nothing to do, or no master for the given token exists
at all) the idle-bus counter counts further. Without
a reset of the idle-bus counter, the access counter is
now increased every 10 steps, means: When the idle-

bus counter reaches 40, 50, 60 and so on.
The maximum value of the access counter is specified
by the number of masters (1...32). Normally it is set
to a slightly higher value of the existing bus masters
(if less than the maximum) for future bus extensions.
As soon as the access counter reaches its maximum
value it is reset to 1 and the cycle starts again.

3

Bus

Access
Counter 4 1 2 3 4

Idle Bus
Counter

40 50 60
70 80

Response Request Response

1

40

2-7 Bits 11-30Bits

Figure 1: Virtual Token Passing

Telegram structure

Telegrams are transmitted as NRZ (Non-Return-To-
Zero) coded UART characters with 76800 bit per sec-
ond (baud rate) and a data frame frame of 9N1 (9
data bits, no parity and one stop bit).

0 1X X X X X X X X A/D

A/D Address/Databit
1 = Address (first byte)

0 1 2 3 4 5 6 7 8
LSB MSBData bits

Start bit

Stop bit

8 Data bits

Figure 2: Data Frame

Page 1 of 11

The usual parity bit is replaced by an address/data bit
(A/D Bit) and always set (=1) in the first byte of a
new telegram data sequence. All bytes of a telegram
must be transmitted without an interruption, idle times
between the bytes are not allowed!
A typical P-NET telegram frame looks like:

Address Control/Status Info-Len Info-Field Checksum

2..24 Bytes 1 Byte 1 Byte 0..63 Bytes 1 Byte

Table 1: P-NET telegram structure

Address Every telegram starts with an address
header of 2..24 bytes containing the destination and
source/sender address(es) which allows the proto-
col to route telegrams even to other net segments
(Multi-Net ability). The A/D bit in the very first
byte of the header is always 1.

Control/Status Next after the address header is
the combined control/status field of 1 byte length.
In a request it specifies the coded command or ser-
vice (control), in a response the status of the given
command or error information.

Info-Len The lower 6 bits of the info field (0...5)
specifies the length of the following info field. Bit
6 and 7 give additional details about the Softwire
number and offset in the info field.

Info-Field The info field itself provides the neces-
sary information how to read or write certain data
from/to another bus participant.

Info-Checksum The last byte is the two’s comple-
ment of the sum of all telegram bytes except for the
checksum itself.

Addressing

P-NET is a Multi-Master system and allows up to 125
modules (masters or slaves) to be connected via one
circular and 2-wired RS485 bus. Termination resistors
are not necessary since of the special interface design
of the modules.
A special feature of P-Net is it’s integrated Multi-Net
ability. Single P-NET segments can be combined to
complex networks whereas multi-port gateways route
the telegrams from one net segment to another. The
address header includes all necessary information to
send a telegram perhaps through several gateways in
case the recipient stays in a further net segment.
Depending on the necessary routing (or addressing)
P-NET therefore differentiates between the following
address header variants:

Simple address header (Requests and Responses)
Complex address header (Requests only)
Extended address header (Requests only)

The lower bits 0...6 in the address bytes specify an ad-
dress (therefore max. 125 segment nodes, 0 and 127
are reserved). Bit 7 is used to differentiate between
a destination and source address whereas the mean-
ing of bit 7 is reverse for requests and responses. In
combination both are used to determine a request or
a response.
And: The bit 7 appearance is essential to distinguish
between the three address header forms (simple, com-
plex and extended) mentioned before.

Bit 7 Request Response

0 Destination Source

1 Source Destination

Table 2: Meaning of bit 7 in address bytes

Simple Address

The simple address type consists of only one destina-
tion and source address and is used for addressing a
bus participant in the same network segment (no gate-
way). In a request bit 7 of the second (source) address
byte is 1.

Byte Bit 7 Bit 6..0

1 0 Destination Address

2 1 Source Address

Table 3: Simple Address Request

In a response bit 7 has the reverse meaning (as men-
tioned before). Responses are always of the simple
address type!

Byte Bit 7 Bit 6..0

1 1 Destination Address

2 0 Source Address

Table 4: Simple Address Response

It is important to note, that a set bit 7 either in the
first or second header byte ALWAYS indicates a simple
header!

Page 2 of 11

Simple Address Routing

Figure 3 shows the address header accessing a node in
the same network segment.

Addr: 3

Master
Addr: 7

Slave

Bus

8307

0783

Destination Address Source Address

Request

Response

Figure 3: Simple Address Routing

The destination fields are grey. The address header is
always two bytes long. Note that the very first byte also
set the parity or A/D bit marking it as the beginning
of the telegram frame which is not shown in the figure.
A simple address has always a set bit 7 either in the first
(response) or second byte (request). This is essential
to differ a simple address from complex or extended
addresses!

Complex Address

A soon as a master addresses a bus participant in an-
other net segment (behind one or more gateways), a
single source and destination address is not sufficient.
Thinking of the address header as a path describing
the routing way to it’s destination, the header must
provide information about the gateway and gateway
ports beside the final destination address.
Complex addresses are only used to forward requests
through gateways. The passing gateways themselves
send only a short acknowledge to the direct sender in
the same net segment (indicated as (IR) in figure 4).
Thus the acknowledge can be of type simple address.
A complex address header looks like:

The first two address bytes (destination bytes) and also
the third length byte are always with a cleared bit 7.
Depending on the involved gateways more destination
bytes following after the length field. They too have
a cleared bit 7. This is essential, otherwise a complex
header address is indistinguishable from other header
types!

The last gateway stores the origin address of the mes-
sage source and sends a request with a simple address
header to the final recipient. The latter builds the an-
swer message and responses back to the gateway with
a simple address header.
To address the original requester, the last gateway then

Byte Bit 7 Bit 6..0

1 0 Destination Address Byte 1

2 0 Destination Address Byte 2

3 0 Number of following address bytes

4 0/1 Destination/Source Address Byte 3

...

n-2 0/1 Destination/Source Address Byte n-2

n-1 0/1 Destination/source Address Byte n-1

n 1 Source Address

Table 5: Complex Address Header

uses the stored address information to create a com-
plex address header (including the final recipient as
source) for routing back the answer. In order to avoid
new ’immediate responses’ by the involved gateways,
the address header is ’closed’ by a null byte.

Complex Address Routing

In the following we will discuss the packet routing
when accessing a node or slave in another net seg-
ment (Multi-Net Routing), see figure 4.
P-NET connects several net segments with the help of
so called Multi-Port masters or gateways. A gateway
is a master with at least two ports. Each port has a
port number and a unique address for the net segment
connected to the port.

Figure 4: Multi-Net Application

To fulfill the immediate response (required by the
token principle), every gateway confirms the received

Page 3 of 11

telegram by sending the acknowledge ’answer comes
later’ using simple address routing (the sender is in
the same segment). The destination node itself sends
it’s response also via simple address to the according
gateway. The responses are shown as curved arrows
(IR = Immediate Response).

Now let’s see how the address routing takes place when
Master 1 (in net segment 1) tries to contact Slave 3
(in net segment 3).
Figure 5 shows a simplified schematic of the data rout-
ing. Port numbers are displayed with a leading ’P’ for
better readability. In reality they are 7 bit values like
the addresses. The device addresses are abbreviated as
A.

Figure 5: Simplified Multi-Net Routing

Please note! Sometimes a master works as a kind of
gateway too - for instance if the master operates as a
bridge between the P-NET and an external UDP net-
work as described in [4]. In that case the master uses
an additional address byte similar to the gateway ports
to route telegrams from and to its internal forwarding
port (e.g. an UDP port with port number 20).
Table 6 shows the five steps, necessary to route the
telegram to it’s destination. To simplify matters bit 7
(differing between source and destination) is not shown
in the table.
The last two bytes in the complex header contain the
master address and (as an example) an optional UDP
port (20) in the master device. The optional master
port does not affect the bit 7 sequence in the header
bytes during the request. But we will see, that the
optional master port byte makes a difference when the
response is routed back to the master.

Step Header with length field (col 3)

Step 1 77 P2 5 32 P2 87 47 P20

Step 2 P2 32 5 P2 87 P1 47 P20

Step 3 32 P2 5 87 41 P1 47 P20

Step 4 P2 87 5 P1 41 P1 47 P20

Step 5 87 11 5 P1 41 P1 47 P20

The routing path is the address 77, port 2 (gateway
1), address 32, port 2 (gateway 2) and address 87 of
the final node. The source address is 47 (Master 1

7-bit Destination Address Byte (decimal value), Bit 7 = 0

7-bit Source Address Byte (decimal value), Bit 7 = 1

Table 6: Complex Header Generation - Request

address). This is step 1 in the table.
Step 2 happens in the gateway. The next destination is
port 2 in the gateway itself. The destination gateway
address (77) is removed and the port 1 (pointing to
the former segment) is add to the source addresses.
Step 3 routes the packet from gateway 1 to gateway
2 (address 32, port 2). The gateway 1 address 41 is
added as the now previous source.
Step 4 is again a routing in the gateway 2 to port 2,
then address 87.
At last step 5. It addresses the final recipient (address
87) and the following source bytes describe the route
back to Master 1. According to [2] the last gateway
stores the information for the return path and uses a
simple address header for the final contact. Therefore
the relevant header consists of only the first two byte
of step 5.

87 11

Letting only masters (and multi-port masters like gate-
ways) dealing with complex addresses reduces the ex-
pense for simple slaves (or servers in a client server
view) when processing address headers, thus simplify
their implementation.
Note again! Every gateway transmits a short acknowl-
edge to the requester in the same net segment (IR) in
figure 4 to fulfill P-NET’s immediate response rule.

The way back

We start with the optional master port (UDP port 20)
as described in [4]. Table 7 shows the individual steps.

Step Header with length field (col 3)

Step 1 11 87

Step 2 41 P1 6 47 P20 32 P2 87 00

Step 3 47 P20 6 77 P2 32 P2 87 00

Table 7: Multi-Net Response to Multi-Master

The final recipient (slave 3 with address 87) builds the
response telegram regarding to the requested action
and answers back to gateway 2 with a simple address
header (step 1 in table 7).
Gateway 2 still knows the complete return path and
complete the address header for the way back to the

Page 4 of 11

original sender (master 47) in P-Net Bus 1. Due to
the fact, that the original sender stays in another net
segment, the answer of Slave 3 is packed in a request
with a complex header. Remember: Complex header
addresses are limited to requests and must not used
for responses!
Gateway 2 also attaches a NULL byte to the header
so to avoid an otherwise immediate response by the
passing gateways, see [2]. The length field therefore
contains 6 and not 5, see Step 2 in table 7.

The final transmission takes place in step 3. Gateway
1 removes it’s own address (41) and port (P1) from
the destination and adds the route to P-Net Bus 2
(address 77, port P2) in the source fields.
Even if the telegram now addresses a participant in
the same net segment, the complex part must be add
to specify the source of the response!

As mentioned before: The optional master port (in our
example the UDP port 20) leads to a different address
header sequence when the answer of the request is
routed back. Table 8 below shows the address headers
without the optional master port.

Step Header with length field (col 3)

Step 1 11 87

Step 2 41 P1 5 47 32 P2 87 00

Step 3 47 77 5 P2 32 P2 87 00

Table 8: Multi-Net Response to Master

The real difference appears in step 3 when the master
receives the final response from gateway 1.
Instead of 3 destination bytes (Step 3 in table 7) the
header now starts with the destination 47 (the master
address) followed by the source 77 (gateway 1 address).
Regarding to table 3 the address header thereby looks
like a simple request.

DISCUSSION - Ambiguous address headers?

Even if the header sequence indicates a simple request
the header is still of a complex address type!
But without knowing the real address type the further
parsing of the telegram content becomes completely
different! In case of a simple address the third byte is
the control/status byte followed by the Info-Len and
Info-Field.
If we handle it as a complex address, the third byte
indicates the length of the following address fields
including the NULL byte.

How can the final recipient - Master 1 - knows?

The author assumes that the master still waits for the
requested answer. (It only got an immediate response
’answer comes later’ from gateway 2 when it first
sends its request to slave 3). Therefore it handles the
header correct just by knowing the expected data.
Unfortunately the author of this articles didn’t find
any explanation to prove this assumption.
Figure 2.7 in [2] shows this final telegram with a
complex header which seems ambiguous and not
distinguishable from a simple address header - with all
following consequences. But it does not explain the
further handling.
Other books (e.g. [5]), pages and web sites don’t
worry about the response through gateways at all or
limit their description to telegrams within a single net
segment only.
The tutorial part 2 found at [4] introduces an addi-
tional number (internal master port, task, control id)
which solves the problem. But it does not explain why
other sources don’t mention this number at all or how
the responses to normal masters looks like.

Without a valid proof - for instance a record with an
IFTOOLS analyzer showing the response of a former
request via complex addressing - the question still re-
mains open.
The author would be happy about any hints, example
records and further information to bring more light into
this question.
You can reach him under jbuermann@iftools.com.

Extended Address

The extended address type is special case of the com-
plex type when the number of following address bytes
(byte 3 in table 5) is 0. As like with complex address-
ing, one gateway is involved (Is this really true? Or is
an extended address only used to address a variable in
a gateway? What says the P-NET specification?)

Byte Bit 7 Bit 6..0

1 0 Destination Address

2 0 Destination Address (Port?)

3 1 Source Address

4 1 Source Address

Table 9: Extended Address

Page 5 of 11

Address header evaluation - conclusion

At this point it should be clear that for the right
processing of a P-NET telegram it is essential to
determine the correct header type. We learned that
there are simple headers for requests and responses,
and complex and extended headers for requests only.
When parsing a P-NET transmission the beginning of
each telegram is clearly visible by the set bit 8 giving
a value higher than FFh.

Bit 7 in the first 1..24 address bytes plays the decisive
factor to differentiate between the various headers.
The following table 10 shows the 7th bit in the first 4
bytes of a P-NET telegram.

Byte 1 Byte 2 Byte 3 Byte 4 Header

0 1 x x Simple Request

1 0 x x Simple Response

0 0 1 1 Extended Request

0 0 0 x Complex Request

Table 10: Header differentiation

A set bit 7 in the first byte indicates a simple response
(line 2). In all other cases the header type is easily dis-
tinguishable by counting the bytes with a NOT set bit
7. Complex header addresses always beginning with at
least 3 destination bytes (bit 7 = 0). Only two des-
tination bytes means an extended address header and
only one destination byte indicates a simple address.

Control/Status field

This one byte field is equal in both, request and re-
sponse telegrams.

Control field

In case of a request it contains the command or
service to be executed by the recipient, see table 11.

Bit 2..0 Service Function

001 STORE Write variable(s)

010 LOAD Read variable(s)

011 AND bit-wise AND operation of variable
with telegram data

100 OR bit-wise OR operation of variable
with telegram data

101 TEST-AND-SET Check, allocate and free resources

Continued on next page

Continued from previous page

Bit 2..0 Service Function

110 LONG LOAD Read data block of more than 56
bytes (max 64 kBytes)

111 LONG STORE Write data block of more than 56
bytes (max 64 kBytes)

Bit 3 Function

0 Softwire-List addressing (default)

1 absolute addressing (service only)

Table 11: Control field

P-NET uses a reduced instruction set to increase the
efficient and processing speed. The instructions in de-
tail:

Store

A master transfers certain data to a slave via the
STORE command. The data follows immediately af-
ter the info field which contains the according software
wire - or with other words - where the data has to be
stored by the recipient. The slave confirms the com-
mand with an empty info field (info-len is null) whereas
the operation result is set in the status byte.

Load

With the LOAD command the master fetches data
from a certain slave. The requested data is specified
by a softwire number (2/4 bytes), an optional offset
(2/4 bytes) and the data type (kind of variable like
byte, word, ...). The size of the softwire number and
of the optional offset is set in the info field, see table
14.

And

As the name indicates, this command executes an AND
operation of the transmitted data with the destination
data addressed like in the STORE instruction.

Or

The same as the AND instruction but now executing
an OR operation of the transmitted data with the des-
tination data addressed like in the STORE instruction.

Test and set

This instruction is used to handle resources between
several masters, similar to the atomic operation in mul-
titasking systems. With Test-And-Set a given service
or resource can be checked for availability and allo-
cated or freed again (by the owner) by one (atomic)
instruction.

Page 6 of 11

Long-Store

Stores a data block of more than 56 Bytes (limited by
the normal total length of the Info-Field of 63 when
using STORE). The maximum data block size with
LONG-STORE is 64 kBytes and will be automatically
segmented.

Long-Load

Reads a data block of more than 56 Bytes (limited by
the normal total length of the Info-Field of 63 when
using LOAD). The maximum data block size with
LONG-LOAD is 64 kBytes and will be automatically
segmented.

Status field

In a response this field stores the confirmation state
(table 12) or an error code (table 13), differentiated
by the value of the lowest bits 0..2.
The confirmation state (application status) is indicated
by Bit 2..0 not 0.

Bit 6..4 Bit 2..0 Status

000 <> 000 ok

001 <> 000 busy

010 <> 000 data error

011 <> 000 not defined

100 <> 000 wait

101 <> 000 answer comes later

110 <> 000 not defined

111 <> 000 not defined

Bit 7 Function

0 No historical data error

1 Historical data error

Table 12: Application status

Whereas an error status is indicated by all bits 2..0 are
cleared.

Bit 7..3 Bit 2..0 Status

00000 = 000 no repsonse

00001 = 000 time out

00010 = 000 too busy

00011 = 000 wait too long

00100 = 000 buffer full/empty

00101 = 000 data format error

00110 = 000 SWNo error

00111 = 000 node address error

01000 = 000 write protection

Continued on next page

Continued from previous page

Bit 7..3 Bit 2..0 Status

01001 = 000 info length error

01010 = 000 instruction error

10000 = 000 error detect failure

10001 = 000 overrun/framing error

10010 = 000 net short circuit

10011 = 000 port not master

10100 = 000 out of sync

10101 = 000 RS-232 handshake error

Table 13: Bus status

Info-Len

The format of the info length field is the same for
requests and responses. It specifies the length (number
of bytes) of the following info (data) field and how to
address the data (Software-Wire number and offset).

A
cc
es
s

xx

7 6

In
fo
-le
ng
th

x x

5 0

Bit 7 Bit 6 Function

0 0 2 Bytes SoftWire-No, no offset

0 1 2 Bytes SoftWire-No, 2 Byte offset

1 0 4 Bytes Code/SoftWire-No, no offset

1 1 4 Bytes Code/SoftWire-No, 2/4 Byte offset

Bit 5..0 Function

xxxxxx Info length

Table 14: Info Len Field

Info-Field

The info field presents the data or information depend-
ing on the control/status byte. This can be a Softwire
number with or without offset, the number of involved
data, raw data or a LONG code (for the LONG LOAD-
/STORE functions).

Checksum

The checksum is calculated by add up all telegram
bytes (except for the last checksum byte) and return
the sum as two’s compliment. Here coded in Lua:

Page 7 of 11

1 f u n c t i o n chksum (data)
2 l o c a l sum = 0
3 f o r i =1,#data−1 do
4 sum = sum + data : b y t e (i)
5 end
6 r e t u r n b i t . band (0−sum , 0xFF) ;
7 end

Data types

P-NET specifies a number of predefined data types
which are used for the data exchange. The number in
parentheses shows the according type number in hex.
Data types consisting of more than one bytes are trans-
mitted with the highest byte (MSB) first.
And: Data types with a size of more than one byte
must always start at an even address, requiring a fill
byte if necessary! This has to be considered when cal-
culating the offset, see table 14.

Boolean (00h)

Byte (01h)

Word (02h)

Integer (03h)

Long Integer (04h)

Real (05h)

Long Real (06h)

Complex (80h)

Boolean

A boolean variable is represented by one byte whereas
only the LSB (bit 0) is taken into account.

Byte

A byte is transferred as a byte and contains a value
between 0 and 255.

Char

Like a byte, but it’s content is interpreted as an ASCII
character (ISO 8-bit code).

Word

A 16 bit value formed by two bytes and with a range
of 0 to 65535.

1.Byte

15 8

2.Byte

7 0

LSB

Integer

The integer type is a signed word type with a range of
-32768 to 32767. It is transmitted like a word with the
highest byte first.

Long Integer

1.Byte

31 24

2.Byte

23 16

3.Byte

15 8

4.Byte

7 0

LSB

Real

The real data type is equal describes a 32-bit single
precision float value according to the standard IEEE
754. It covers a range from ≈ 1 · 10−38 bis ≈ 3 · 1038
with a precision of 7...8 digits.

1.Byte

31 24

2.Byte

23 16

3.Byte

15 8

4.Byte

7 0

LSB

Si
gn

x

31

Ex
po
ne
nt

x x

30 23

M
an
tis
sa

x x

22 0

LSB

Long Real

The long real data type describes a 64-bit double pre-
cision float value according to the standard IEEE 754.
It covers a range from ≈ 2 · 10−308 bis ≈ 3 · 2308 with
a precision of 15...16 digits.

1.Byte

63 56

2.Byte

55 48

3.Byte

47 40

4.Byte

39 32

5.Byte

31 24

6.Byte

23 16

7.Byte

15 8

8.Byte

7 0

LSB

The partitioning of the long real type is similar to the
real type. The sign is the highest bit, followed by a
now 11 bit exponent and a 52 bit mantissa.

Complex

The complex data type covers all data without a hard
coded length. Something like strings, arrays, records
or general buffers of a certain length.
The optional offset in the Info Len Field (table 14) is
used to access a certain data member in a complex
data structure.

Page 8 of 11

Channels

One of the characteristics of the P-NET protocol is the
so called channel concept which is fundamental for the
transport of any data. A channel covers all necessary
information to handle process signals, inputs and more.
For example:
A single P-NET node (or slave) reads the temperature
via an analog input and temperature sensor. With-
out further information it’s up to the application layer
how to interpret this data. E.g.: How is the value
stored (number format), what are the scaling factors,
the physical unit, possible errors, configuration and so
on. In this case all information to handle the process
signal properly is separated from the module and must
be adapted every time a module is exchanged or re-
placed by another one.
With the idea of the P-NET channel every module it-
self provides the application with all necessary infor-
mation how to process the data. Back to our example
of an analog input these should are the number format
of the input value, calibration offsets, minimum and
maximum values, scaling factors, precision and more.
It’s clear that such a range of information is only useful
if organized. Therefore P-NET specifies the structure
of a channel as a basic part of the protocol, providing
a common valid interface for accessing even different
process signals.

Channel structure

P-NET organizes the internal channel information
(process signal, scale, ...) as a sequence of 16 reg-
ister variables. It is important not to mix up a channel
register with a - for example - CPU register. Channel
registers exists in any of the former data types. A reg-
ister can consists of only one byte but also as a record
of different data types.
According to the P-NET standard every channel regis-
ter has to serve a well defined purpose. Table 15 be-
low shows the mandatory register entries. The memory
column displays the used kind of memory (EEPROM,
RAM, ROM) and the accessibility shortened as: ro:
Read only, rpw: Read Protected Write, rw: read and
write.

Rg Name Memory Format Description

00h Primary Value

09h ChConfig EEPROM rpw record Configuration

0Ah Maintenance EEPROM rpw long int Maintenance info
(date, category)

Continued on next page

Continued from previous page

Rg Name Memory Format Description

0Eh ChType ROM ro record Type & register
info

0Fh ChError RAM ro record Error status/code

Table 15: Channel registers

In a P-NET bus a channel is identified by it’s unique
channel number. This number is assigned and admin-
istered by the P-NET user organisation.
Every bus participant can contain several channels (e.g.
a Multi-IO module) whereas channel 0 has a special
meaning. Channel 0 is also named as the Service Chan-
nel and must be provided by every bus module. Table
17 below shows the service channel, the mandatory
entries are gray.

Rg Name Memory Format Description

00h NumberOfSwNo ROM ro integer highest SWNo in
module

01h DeviceID ROM ro record device number,
program version,
producer info

03h Reset RAM rw byte optional module
reset

04h PnetSerialNo function record node address, se-
rial number

06h TimeDate function record date and time
value

07h FreeRunTimer RAM ro word module time
counter

08h WDTimer RAM rw real watchdog counter

09h ModuleConfig EEPROM rpw record module configu-
ration

0Ah WDPreset EEPROM rpw real watchdog pre-
settings

0Bh MailFilter RAM rw
Init EEPROM

string message filter

0Ch MailBox RAM rw buffer message buffer

0Dh WriteEnable RAM rw boolean EEPROM write
release

0Eh ChType ROM ro record Type register info

0Fh ChError RAM rw record Error status/code

Table 16: Service channel

Analog input channel

The following channel definition serves as an example,
picking up our former temperature analogy.

Rg Name Memory Format Description

00h AnalogIn RAM rw real input value

07h HighLevel RAM ro
Init EEPROM

real high alarm value

Continued on next page

Page 9 of 11

Continued from previous page

Rg Name Memory Format Description

08h LowLevel RAM ro
Init EEPROM

real low alarm value

09h ChConfig EEPROM rpw record module configura-
tion

0Bh FullScale EEPROM rpw real full scale value

0Ch ZeroPoint EEPROM rpw real zero point value

0Dh Maintenance EEPROM rpw record maintenance info
(date, category)

0Eh ChType ROM ro record Type register info
(used register
flags)

0Fh ChError RAM rw record Error status/-
code (high, low
alarm,...)

Table 17: Service channel

By accessing the service channel 0, the application
software is able to collect all necessary information to
handle the process signal (the provided analog input)
properly and without ’hard-coding’ some module prop-
erties in the software itself!

Softwire Numbers

We know so far that every P-NET module is organized
by a series of channels. Channel 0 is the service channel
and describes the basic module properties. There are
also more channels, depending on the module capaci-
ties. Each channel has a unique number authorized by
the P-NET user organisation.
But how do we access a certain register in a channel?
The data represented by a register value can not only
varying in type (byte, word, real, record, ...) and access
permission but also in the kind of memory where they
were stored in the module (EEPROM, RAM, ROM).
The tables indicated this already in the memory col-
umn.
Where may also exists some dependencies between a
EEPROM and RAM variable. For example: P-NET
allows the initialisation of a RAM variable by reading
it’s counterpart in the EEPROM.
The result is a huge number of addresses, scattered
widely between the three storage types - and the dif-
ferent channels!
To make things easier, P-NET hides the final address
of a register variable by using a mapping mechanism
called Softwire Numbers.
In doing so every register address is stored in a list
and every list entry is assigned with an unique number
- the softwire number. The list itself is completely
transparent for the user (or application). And: The
internal structure of a module can be changed without

any impact of the application, because the assigned
number (or index) remains the same!
To access a certain register in a channel is therefore
achieved by using a Softwire number which is a com-
bination of the channel and the register index.

un
us
ed

x

15 12

C
ha
nn
el

x x

11 4

R
eg
ist
er

x x

3 0

LSB

The lowest half byte indicated the register (a number
between 00h and 0Fh). The Bits 4...11 (8 bits) contain
the channel number.

0000
0001
0002

000F
0010
0011

0017

001F
0020
0021

SWNo 0
SWNo 1
SWNo 2

SWNo 15
SWNo 16
SWNo 17

SWNo 23

SWNo 31
SWNo 32
SWNo 33

ROM ro
Device ID

NumberOfSWNo

Error Status

RAM rw
Channel 0

Channel 1

Analog In
RAM rw

Error Status

HighAlarm

Softwire List

P-NET Module

Figure 6: Softwire List

Note that the node address is coded in the header.
When the addressed module or node receives the tele-
gram it knows by its internal softwire list which memory
address the given softwire number means.
The softwire number is transmitted in the Info-Field
which also hold the data type of the accessing regis-
ter in the byte following the softwire number. With
these information the node not only knows where it
has to look for the data but also which kind of data it
accesses, see figure 6.

Examples

The following telegram sequence reads register 10 in
channel 1 (a single byte) of the module or node with
address 57 (first byte). The sender or source has ad-
dress 9 (second byte with set 7th bit since it is a re-
quest).

39 89 02 03 00 1A 01 1E

Page 10 of 11

DES
57

SRC
9

CONTROL
LOAD/SW-List

INFO-TYPE
2 Byte SWNo

INFO-LEN
3

Chn
1

Reg
10

TYPE
Byte

CKS
1E

STORE command sequence

In the following the master with address 1 wants to
clear the error status (register 0Fh in the service chan-
nel) of module 64.

40 81 01 03 00 0F 00 2C

DES
64

SRC
1

CONTROL
STORE/SW-List

INFO-TYPE
2 Byte SWNo

INFO-LEN
3

Chn
0

Reg
15

TYPE
Boolean

CKS
2C

The module responses with an error, indicating that
the given register is write protected.

81 40 40 00 FF

DES
1

SRC
64

STATUS
Write Protection

DATA-LEN
0

CKS
FF

Further links

https://www.p-net.org/
https://en.wikipedia.org/wiki/IEEE 754
https://de.wikipedia.org/wiki/P-NET
https://classic.proces-data.com/63/002J1EFSED/8KQR9-
01/Description ENG.htm
https://classic.proces-data.com/6D/002J1EFSED/THPUS-
01/Description ENG.htm
https://classic.proces-data.com/63/002J1EFSED/9HS9H-
01/Description ENG.htm
https://classic.proces-data.com/63/002J1EFSED/RF7DD-
01/Description ENG.htm

References

[1] Franz J. Gira, Dipl.-Ing. Mag. Martin Manninger.
Skriptum zum Hochschulkurs Feldbus Systeme,
P-NET, 24 April, 1994

[2] Otto-von-Guericke-Universität Magdeburg,
Laborpraktikum Nachrichtentechnik, Versuch
P-NET, NT 20

[3] Markus Haag, Diplomarbeit, P-NET-Slave auf
einem 88C166 Mikrocontroller, Implementierung
eines P-NET Knotens, Institut für Computertech-
nik, Universität Wien, Juni 1999

[4] P-Net tutorials on https://www.p-net.org/p-net-
tutorials/

[5] Hans-Jürgen Gevatter, Ulrich Grünhaupt, Hand-
buch der Mess- und Automatisierungstechnik in
der Produktion, Springer Verlag, 2006

Page 11 of 11

