
Modbus Compact
Joachim Bürmann, IFTOOLS GmbH

May 24, 2023

T
Modbus is a multi-drop network based

communication protocol for master/client
architecture. Originally published by Modi-

con (now Schneider electric) in 1979 to commu-
nicate with PLCs (programmable logic controller)
it has become a de facto standard for its simplic-
ity and robustness. Serial Modbus connections
provide two basic transmission modes: ASCII and
RTU. The Modbus/TCP Security protocol (based
on TLS) is not discussed in this article.

Overview

Modbus is a Master/Slave protocol. Only one master is
connected to the bus at the same time. A conversation
always starts with a request from the master, (a slave
never starts a transmission on its own behalf). The
master sends a message and depending on the message
content, a slave responses to it. Each Modbus message
has the same structure and is composed of the same
four field. The sequence of the fields is always the
same, thus makes it easy to parse and evaluate the
messages by the bus participants.

Device address Address of the message receiver

Function code Code defining the message type

Data Data block with additional information

Checksum Checksum of the message

The address field in the message is used to specify the
device which should response to the request. All other
devices with a different address ignore the message.
The requested device responses with the same address
(not the master address) which we will see later may
cause some difficulties when determining the message
sender by an outside observer.

The function code (or number) specifies the meaning
of the following data. The last field in a Modbus mes-
sage or telegram is a checksum to validate the correct
transmission of the message content.

Modbus transmission modes

Modbus over serial line provides two basic transmission
modes, ASCII or RTU. In ASCII messages consists of
readable ASCII characters whereas RTU transmits the
data in raw binary format, makes the messages un-
readable when simply monitoring it, but reduces the
message size to a minimum.
To give the bus participants an easy way to detect
the start and end of a telegram transmission, Modbus
messages are framed either by a start/end sequence
(ASCII) or a defined idle/pause time (RTU).
In Modbus ASCII every message starts with a colon
’:’ and ends with a carriage return linefeed (CRLF). In
Modbus RTU telegrams are separated by a transmis-
sion pause (idle time) of at least 3.5 characters (the
time it needs to send 3.5 bytes). The two modes in
detail:

Modbus ASCII

In a Modbus ASCII communication each 8-bit byte in
a telegram is represented by two ASCII characters in
the range of 0-9 and A-F (hexadecimal digits). For
instance the byte value hex 5B is encoded as the two
characters 0x35 (”5”) and 0x42 (”B”).
To separate the telegrams every telegram starts with a
colon and ends with a carriage return line feed. Since
these characters are not part of the hexadecimal char-
acter range, they cannot mixed up with the actual data
and are easily detectable as a telegram start or end. In

Page 1 of 21

contrary to the RTU mode Modbus ASCII makes no
special timing requirements. This becomes especially
important when you transmit data over a medium with
very low time allowance like a modem connection.
The downside is, that all data bytes must be sent as
pairs of hexadecimal characters encoded in ASCII. This
makes the protocol more human readable but means
the double size of data which must be transmitted over
the line. And the sending and receiving applications
must convert the raw data to and from ASCII.

Telegram frame

A Modbus ASCII frame looks like:

Start Address Function Data LRC End

1 char 2 chars 2 chars 0...2*252 char(s) 2 chars 2 chars

: CR,LF

Timing

Modbus ASCII is not very affected by timings. Unless
the user has configured a longer timeout, intervals of
up to one second between every sent character are al-
lowed. But even timeouts of several seconds are not
uncommon in wide area networks.

LRC Checksum

Each telegram in ASCII mode includes a checksum
field. The checksum itself based on a Longitudinal
Redundancy Checking (LRC) calculation which is per-
formed on the telegram body (excluding the starting
colon, the ending CRLF and - of course - the checksum
field).
An according checksum algorithm in Lua is:

1 f u n c t i o n LRC(data)
2 l o c a l sum = 0
3 f o r i =1,#data−1 do
4 sum = sum + data : b y t e (i)
5 end
6 r e t u r n b i t . band (0−sum , 0xFF) ;
7 end

Modbus RTU

In the RTU mode the data is transmitted in 8-bit values
(raw binary sequences). There is also no special byte
value indicating the beginning or ending of a telegram
sequence. This makes Modbus RTU telegrams very
compact in size. But you need another mechanism to
detect the start of every telegram in the data stream,
see section Modbus RTU Timing.

Telegram frame

A Modbus RTU frame looks like:

Address Function Data CRC

1 byte 1 byte 0 up to 252 byte(s) 2 bytes

The maximum size of a Modbus RTU frame therefore
is 256 bytes.

Timing

Modbus RTU Timing Modbus RTU does not define
any start and/or end sequence. In Modbus RTU tele-
gram bytes must be sent consecutively with a maxi-
mum delay of 1.5 characters in between them and with
a specified minimum 3.5 character space between the
telegrams as a delimiter. A character here is defined as
the time it needs to send a character or byte with the
given baud rate. For example: A transmission format
of 11 bits (1 start bit, 8 data bits, 1 parity bit and 1
stop bit) and a transmission rate of 19200 baud gives
you:

1.5 ∗ 11

19200
≈ 0.00086s and 3.5 ∗ 11

19200
≈ 0.002s

It is worth mentioning that a lot of Modbus RTU prob-
lems are caused by violation of these timing specifica-
tions. And: The exact values for the telegram delimiter
may differ in certain applications.

Figure 1: Modbus RTU frame timing

Figure 2: Modbus RTU byte timing

Remark

In [1] it is recommended to use a fixed timeout for
both timings t1.5 and t3.5 when using baud rates above
19200. This especially to avoid heavy CPU loads in the
bus participants. The recommendations are:
t1.5 = 750µs for the inter-character timeout and
t3.5 = 1.750ms for the inter-frame delay.

Page 2 of 21

CRC Checksum

Telegrams in RTU mode contain an error checking
field based on a Cyclical Redundancy Checking (CRC)
method. The CRC checksum is a 16 bit value calcu-
lated from the entire message (except for the CRC field
itself). This means: Address, function and data.
The 16 bit checksum is added to the message as the
last two bytes whereas the low byte is added first.
The following code snippet shows a CRC16 calculation
for Modbus (polynomial 0xA001) implemented in Lua.

1 f u n c t i o n c r c 1 6 (data)
2 l o c a l c r c F u l l =0xFFFF
3 l o c a l p o l y=0xA001
4 f o r i =1,#data do
5 c r c F u l l=b i t . bxor (c r c F u l l , data : b y t e (i))
6 f o r j =1,8 do
7 c r c l s b=b i t . band (c r c F u l l , 0 x0001)
8 c r c F u l l=b i t . r s h i f t (c r c F u l l , 1)
9 c r c F u l l=b i t . band (c r c F u l l , 0 x7FFF)

10 i f c r c l s b == 1 then
11 c r c F u l l=b i t . bxor (c r c F u l l , p o l y)
12 end
13 end
14 end
15 l o c a l msb=b i t . r s h i f t (c r c F u l l , 8)
16 l o c a l l s b=b i t . band (c r c F u l l , 0 xFF)
17 r e t u r n msb*256+ l s b
18 end

Modbus addressing rules

Modbus uses a 8-bit value to address the recipient of
a message. In Modbus ASCII it is coded as two hex-
adecimal characters, in Modbus RTU as a single byte.
The available address range is divided as:

Address Description

0 Broadcast address, accepted by all devices

1...247 Individual Modbus devices

248...255 Reserved

Since a Modbus message always only contains the ad-
dress of the requested device (even in the device re-
sponse), there is no special need for a master address.

The Modbus data model

Modbus was originally designed as a protocol to ac-
cess and control several PLCs1 over a network. PLCs
replaced the hard-wired automation control of those
days and came with a far more flexible and in particu-
lar programmable input and output (IO) conception.

1programmable logic controller

Typical PLCs range from small modules with a few IOs
to complex modular devices with thousands IOs, regis-
ter memory and sometimes with an integral processor.
PLCs provide access to the several IOs and control reg-
ister via a memory based model, whereas IOs can be
divided roughly in the four topics: analog inputs, dig-
ital inputs, analog outputs and digital outputs. Addi-
tional further memory registers are used for controlling
or holding parameters (e.g. like full scales).
Modbus adopt this concept in its own design. In Mod-
bus every accessible data is organized too in four gen-
eral data banks or address segments. These are in
Modbus terminology: coils, discrete inputs, holding
registers and input registers. The names may vary in
applications. Holding registers are sometimes called
output register, coils referred as digital or discrete (bit-
wise) outputs2.
The following table shows the relationship between the
several IO types and according Modbus functions.

Type & Address Access Modbus Function Name

Discrete Output
Data type: Single bit
Address: 1-9999

Read Read Coils (01)

Write Write Single Coil (05)

Holding Register
Data type: 16-bit word
Address: 40001-49999

Read Read Holding Register (03)

Write Write Single Register (06)

Discrete Input
Data type: Single bit
Address: 10001-19999

Read Read Discrete Input (02)

Input Register
Data type: 16-bit word
Address: 30001-39999

Read Read Input Registers (04)

Table 1: IO Function Overview

Discrete inputs and outputs are mostly digital IOs, in-
put registers may be referred as analog inputs.
Holding registers are the most universal 16-bit register
in Modbus. They can be read and written and there-
fore be used for general usage like inputs, outputs,
configuration data and more. As their name indicated,
they just can ’holding’ data.

The address ranges in the left column are a relic of
early Modbus days and often referred to as the old
Modicon convention. You neither will see nor use these
address offsets in a Modbus sequence. But they may
appear in older device specifications and serves there
to distinguish different Modbus IO types or banks.
For example: If a register documentation tells you the
register number is 40001 it means the holding (analog

2Coils are named after the coils in relays

Page 3 of 21

output) register 1. If a register is referred as 30002,
it is (analog) input register number 2. The address
therefore specifies not only the location but also how
to access the register without naming the type.

Modbus Function Codes

Modbus functions are specified by the function num-
ber or code in the telegram. Function codes are like
commands to access (amongst others) one of the four
general IO types (banks or address ranges) described
above.
Beside these basic functions for data access exist fur-
ther function codes for diagnostic, file record access
and to transport other protocol sequence in a Modbus
telegram (encapsulated interface transport).
The functions supported by a Modbus device are ven-
dor independent and may only provide a small set of
the following list.

Function Description

01 Read Coils

02 Read Discrete Inputs

03 Read Holding Register

04 Read Input Registers

05 Write Single Coil

06 Write Single Register

07 Read Exception Status (Serial Line only)

08 Diagnostics (Serial Line only)

11 Get Comm Event Counter (Serial Line only)

12 Get Comm Event Log (Serial Line only)

15 Write Multiple Coils

16 Write Multiple Registers

17 Report Slave ID

20 Read File Record

21 Write File Record

22 Mask Write Register

23 Read/Write Multiple Registers

24 Read FIFO Queue

43 Encapsulated Interface Transport

Table 2: Common Modbus function codes

01 (0x01) Read Coils

Function to read from 1 up to 2000 continuous states
of digital outputs (coils). The request specifies the
start address of the first coil and the number of coils
to be read.
The output states are packed as one coil per bit in
the response data field from low (LSB) to high order
(MSB). The coil state is indicated as 1=ON, 0=OFF. If
the requested number of coils is not a multiple of eight,
the last byte in the response is padded with zeros.

The byte count field in the response specifies the num-
ber of bytes needed to hold the data.

Request

Function code 1 Byte 0x01

Starting address 2 Bytes 0x0000 to 0xFFFF

Quantity of coils 2 Bytes 1 to 2000 (0x7D0)

Response

Function code 1 Byte 0x01

Byte count 1 Byte N

Coil status n Bytes n = N or N + 1

Error

Function code 1 Byte 0x81

Exception code 1 Byte 1, 2, 3, 4

Example

Read of the digital output states 2 to 13 from device 7.
All together 12 states which are returned in two bytes
(with 4 padding zeros).
Please note! The address of the output states counts
from 0, coil number 2 is therefore indexed with 1.

Request Response

Field Hex Field Hex

Address 07 Address 07

Function 01 Function 01

Address High Byte 00 Byte Count 2

Address Low Byte 01 Output 2-9 FF

Quantity High Byte 00 Output 10-13 0F

Quantity Low Byte 0C CRC16 low 30

CRC16 low 6D CRC16 high 08

CRC16 high A9

In the example the responded state of all 12 coils is
ON, which is: 11111111 00001111 or FFh 0Fh. The
remaining bits 13-16 are padded with zero.

02 (0x02) Read Discrete Inputs

This function is used to read the state of digital inputs.
It is similar to the Read Coils function but addresses
digital inputs instead.
The function reads from 1 to 2000 continuous states of
digital inputs. The request specifies the start address
(count from zero) of the first input and the number of
inputs to be read.
The results are packed as one digital input per bit in
the response data field from low (LSB) to high order

Page 4 of 21

(MSB). The input state is indicated as 1=ON, 0=OFF.
The byte count field in the response specifies the num-
ber of bytes needed to hold the data. If the requested
quantity of inputs is not a multiple of eight, the last
byte in the response is padded with zeros.

Request

Function code 1 Byte 0x02

Starting address 2 Bytes 0x0000 to 0xFFFF

Quantity of inputs 2 Bytes 1 to 2000 (0x7D0)

Response

Function code 1 Byte 0x02

Byte count 1 Byte N

Input status n Bytes n = N or N + 1

Error

Function code 1 Byte 0x82

Exception code 1 Byte 1, 2, 3, 4

Example

Read the digital input states 4 to 23 from device 17.
The result is covered in 3 bytes (20 inputs).

Request Response

Field Hex Field Hex

Address 11 Address 11

Function 02 Function 02

Address High Byte 00 Byte Count 03

Address Low Byte 03 Output 4-11 FF

Quantity High Byte 00 Output 12-19 FF

Quantity Low Byte 14 Output 20-23 0F

CRC16 low 88 CRC16 low 4B

CRC16 high 05 CRC16 high 1A

The 20 inputs are transmitted as 3 bytes, here all inputs
are ON. The first two bytes are 11111111 or FFh, the
third byte contains the last 4 bits and a zero padding
for the remaining four bits 00001111 or 0Fh.

03 (0x03) Read Holding Register

In Modbus holding registers are the most universal reg-
ister type. You can think of them as a general 16-bit
memory, used as analog output, input or configuration
register holding a certain value.
Like in the former Read Coils and Read Discrete Inputs
the function specifies a start address and a quantity
to read a continuous block of holding registers. The
address counts from zero. A register itself is a 16-bit

value. Modbus itself does not specify the kind of data
’behind’ a register. Originally the values were limited
to 16-bit words, but newer devices may also provide 32-
bit floating-point values represented by two successive
16-bit registers. But this is application specific and not
part of this article.

Request

Function code 1 Byte 0x03

Starting address 2 Bytes 0x0000 to 0xFFFF

Quantity of registers 2 Bytes 1 to 125 (0x7D)

Response

Function code 1 Byte 0x03

Byte count 1 Byte 2 x N

Register value N x 2 Bytes

Error

Function code 1 Byte 0x83

Exception code 1 Byte 1, 2, 3, 4

Example

The following example shows a request to read the
registers 200 - 201 from device 240 (F0h).

Request Response

Field Hex Field Hex

Address F0 Address F0

Function 03 Function 03

Address High Byte 00 Byte Count 04

Address Low Byte C7 Register (200) High Byte 43

Quantity High Byte 00 Register (200) Low Byte 67

Quantity Low Byte 02 Register (201) High Byte B3

CRC16 low A1 Register (201) Low Byte 33

CRC16 high 17 CRC16 low 8B

CRC16 high 82

The slave returns as results for register 200 4367h or
17255, for register 201 B333h or 45875. The latter may
be a two-complementary value and therefore negative.
Both register may also form a 32-bit floating-point
value 4367B333h which is the binary representation of
231.7. As mentioned before: This interpretation of the
registers depends on the device and application and is
not further considered by this article.

04 (0x04) Read Input Registers

Input registers are equal to analog inputs and speci-
fied as 16-bit words. Again: The meaning of a single

Page 5 of 21

or successive register values is application dependent.
With the IFTOOLS analyzer software you can format
the output depending on a certain device (address)
and/or register. But from the Modbus protocol point
of view they are 16-bit numbers.
The address counts from zero, the register values are
in the big endian order, means: high byte followed by
low byte.

Request

Function code 1 Byte 0x04

Starting address 2 Bytes 0x0000 to 0xFFFF

Quantity of Input Registers 2 Bytes 1 to 125 (0x7D)

Response

Function code 1 Byte 0x04

Byte count 1 Byte 2 x N

Register value N x 2 Bytes

Error

Function code 1 Byte 0x84

Exception code 1 Byte 1, 2, 3, 4

Example

The Read Input Registers function follows the same
rules as described in Read Holding Register. Here a
small example which reads two holding registers (ana-
log inputs) at address 0 from device 1.

Request Response

Field Hex Field Hex

Address 01 Address 01

Function 04 Function 04

Address High Byte 00 Byte Count 04

Address Low Byte 00 Register (0) High Byte 00

Quantity High Byte 00 Register (0) Low Byte 00

Quantity Low Byte 02 Register (1) High Byte 00

CRC16 low 71 Register (1) Low Byte 00

CRC16 high CB CRC16 low 84

CRC16 high FB

The result of both registers is 0000h.

05 (0x05) Write Single Coil

A single coil means a single digital output (coils comes
from the coils used in older relays). This function is in-
tended to set a single digital output in a remote device
to ON or OFF. A value of FF00h means ON, a value
of 0000h means OFF. Without an error the response
is the echo of the request.

Coil addresses are counted from zero. So Coil number
1 is addressed as 0.

Request

Function code 1 Byte 0x05

Output Address 2 Bytes 0x0000 to 0xFFFF

Output Value 2 Bytes 0x0000 or 0xFF00

Response

Function code 1 Byte 0x05

Output Address 2 Bytes 0x0000 to 0xFFFF

Output Value 2 Bytes 0x0000 or 0xFF00

Error

Function code 1 Byte 0x85

Exception code 1 Byte 1, 2, 3, 4

Example

The example switches the digital output at output ad-
dress 7 to ON in the remote device 1. Remember: Coil
addresses starting at zero. Address 6 in the example
therefore means Coil (or digital output) 7.

Request Response

Field Hex Field Hex

Address 01 Address 01

Function 05 Function 05

Output Address High 00 Output Address High 00

Output Address Low 06 Output Address Low 06

Output Value High FF Output Value High FF

Output Value Low 00 Output Value Low 00

CRC16 low 6C CRC16 low 6C

CRC16 high 3B CRC16 high 3B

06 (0x06) Write Single Register

This function is used to write a value into a single hold-
ing register of a remote device. The request specifies
the register address counting from zero and a 16-bit
word as the output value.
Writing data in successive registers, for instance a 32-
bit floating-pint number or other values bigger as 16-
bit, is provided by the Modbus function Write Multiple
Registers.

Request

Function code 1 Byte 0x06

Register Address 2 Bytes 0x0000 to 0xFFFF

Register Value 2 Bytes 0x0000 to 0xFFFF

Page 6 of 21

Response

Here again the normal response is just the echo of the
request.

Function code 1 Byte 0x06

Register Address 2 Bytes 0x0000 to 0xFFFF

Register Value 2 Bytes 0x0000 or 0xFFFF

Error

Function code 1 Byte 0x86

Exception code 1 Byte 1, 2, 3, 4

Example

Here is an example of a request to write holding register
6 to 0019h or 25 decimal in the remote device 128
(address 80h). In case of no error the slave echoes the
request back as response.

Request Response

Field Hex Field Hex

Address 80 Address 80

Function 06 Function 06

Register Address High 00 Register Address High 00

Register Address Low 05 Register Address Low 05

Register Value High 00 Register Value High 00

Register Value Low 19 Register Value Low 19

CRC16 low 46 CRC16 low 46

CRC16 high 10 CRC16 high 10

07 (0x07) Read Exception Status
(Serial line only)

Reads the contents of eight exception status coils
within a slave. The meaning of the eight coils is user-
defined, their addresses controller dependent.
Typical applications are to hold information about the
controller’s status. For example: Machine on/off, bat-
tery state, error conditions or other user defined flags.
Broadcast is not supported!
The function provides a simple and by its short message
length a fast method for accessing this information,
because the Exception Coil references are known by the
device (no coil reference is needed in the function).
Please note! The Modbus specification defines this as
a serial only function. Therefore it should only be used
if the addressed slave is a serial device.

Request

Function code 1 Byte 0x07

Response

Function code 1 Byte 0x07

Output Data 1 Byte 0x00 to 0xFF

Error

Function code 1 Byte 0x87

Exception code 1 Byte 1 or 4

Example

Here is an example of a request to read the exception
status in slave device 19.

Request Response

Field Hex Field Hex

Address 13 Address 13

Function 07 Function 07

CRC16 low 4D Output Data 6D

CRC16 high 42 CRC16 low 43

CRC16 high D8

The returned exception status (Output Data) is 6Dh

or 01101101. Left to the right (highest bit to lowest
bit) the output is: OFF-ON-ON-OFF-ON-ON-OFF-
ON. The status itself is shown from the (device in-
ternal) highest to the lowest addressed coil.

08 (0x08) Diagnostics (Serial line only)

Modbus provides this special function to perform some
communication tests between the master and a slave
or to check internal error conditions in a slave device.
The function is limited to serial devices.
The Diagnostics function uses a two-byte sub-function
code listed below in the request to specify the kind
of test. Some tests also need further data to be send
to the test device which is transmitted in the data
following the sub-function field.
Normally using the diagnostics function should not ef-
fect the remote device (internal state and registers).
Nevertheless certain tests can optionally reset error
counters in the addressed device.
And: A slave can be forced into a ’Listen Only Mode’
in which it only monitors the transmitted messages but
does not responses anymore. This clearly has an effect
to the application program. Especially if it depends
on the responses of the device. However it sometimes
becomes useful to remove a malfunctioning device from
the bus by putting it in the ’Listen Only Mode’.

Page 7 of 21

Request

Function code 1 Byte 0x08

Sub-Function 2 Bytes

Data N x 2 Bytes

Response

Function code 1 Byte 0x08

Sub-Function 2 Bytes

Data N x 2 Bytes

Error

Function code 1 Byte 0x87

Exception code 1 Byte 1 or 3 or 4

Supported Sub-function Codes

The naming of Modbus devices differs depending on
the documentation. Sometimes the master is also
called the client, and the slaves named as servers. In
this document we prefer the master/slave convention.
The following sub-function names therefore speaks of
slaves instead of clients.

Sub-Function Name

0x0000 Return Query Data

0x0001 Restart Communications Option

0x0002 Return Diagnostic Register

0x0003 Change ASCII Input Delimiter

0x0004 Force Listen Only Mode

0x0005...0x0009 RESERVED

0x000A Clear Counters and Diagnostic Register

0x000B Return Bus Message Count

0x000C Return Bus Communication Error Count

0x000D Return Bus Exception Error Count

0x000E Return Slave Message Count

0x000F Return Slave No Response Count

0x0010 Return Slave NAK Count

0x0011 Return Slave Busy Count

0x0012 Return Bus Character Overrun Count

0x0013 RESERVED

0x0014 Clear Overrun Counter and Flag

0x0015...0xFFFF RESERVED

Table 3: Modbus Error Codes

00 Return Query Data

The tested device is forced to return (loop back) the
data received in the data field. The response must be
identical to the request.

Sub-Function Data Request Data Response

00 00 Any Data Echo Request Data

01 Restart Communications Option

The remote device must re-initialize and restart its se-
rial port and also must clear all its communication
event counters. In ’listen Only Mode’ no response is
expected.
Please note! This is the only method to bring a device
back from the ’Listen Only Mode’.
If the device is not in ’Listen Only Mode’, it returns a
normal response before performing the restart.
Depending on the data field, the device also clears
its communication events log (FF 00) or leave it un-
changed (00 00).

Sub-Function Data Request Data Response

00 01 00 00 Echo Request Data

00 01 FF 00 Echo Request Data

02 Return Diagnostic Register

The Modbus specification supports a 16-bit wide di-
agnostic register in very slave device. The meaning of
the 16 bit values are vendor dependent. Bit 15 is the
highest bit. The master can query the content of this
register with sub-function 2.

Sub-Function Data Request Data Response

00 02 00 00 Diagnostic Register Contents

03 Change ASCII Input Delimiter

In Modbus ASCII Mode, the last character of a mes-
sage is the linefeed. But sometimes it is not wanted
to have the linefeed as message delimiter. With sub-
function 02 the linefeed character can be replaced by
another one.
Please note! The new character should not occur in
other parts of a ASCII message. Thus ’:’, carriage
return and the characters ’0’...’9’ as also ’A’...’F’ are
excluded.

Sub-Function Data Request Data Response

00 03 CHAR 00 Echo Request Data

04 Force Listen Only Mode

Tells the addressed device to switch into ’Listen Only
Mode’. In this mode the device not longer communi-
cates active with the bus but only listen (e.g. to detect
a command to end this mode). This is an appropriate
method to mute the device, allowing the rest of the
bus participants to communicate without interruptions

Page 8 of 21

of this device. The device immediately becomes mute,
no response is returned.
The only command accepted by the device, when in
’Listen Only Mode’ is the Restart Communications Op-
tion (function 8, sub-function 01).

Sub-Function Data Request Data Response

00 04 00 00 No response returned

10 Clear Counters and Diagnostic Register

Modbus devices may provide internal counter and di-
agnostic register. With this function the master can
force the addressed device to clear them.

Sub-Function Data Request Data Response

00 0A 00 00 Echo request data

11 Return Bus Message Count

Returns the number of all messages the addressed
device received after last restart, counter clearing or
power-up. Note! This includes not only the messages
for the addressed slave but all transmitted messages
received on the bus.

Sub-Function Data Request Data Response

00 0B 00 00 Total message count

12 Return Bus Communication Error Count

This diagnostics sub-function returns the number of
CRC errors the addressed device encountered since its
last restart, clear counter instruction or power-up.

Sub-Function Data Request Data Response

00 0C 00 00 CRC error count

13 Return Bus Exception Error Count

The function queries the number of Modbus excep-
tions returned by the device since its last restart, clear
counter instruction or power-up. The several exception
types are listed in section Modbus Exception Codes.

Sub-Function Data Request Data Response

00 0D 00 00 Exception error count

14 Return Slave Message Count

In contrary to sub-function 11 this function only re-
turns the quantity of messages addresses to a given

device since its last restart, clear counter instruction or
power-up. The number covers also the received broad-
cast messages.

Sub-Function Data Request Data Response

00 0E 00 00 Slave message count

15 Return Slave No Response Count

Queries the quantity of requests the addressed device
did not answered since its last restart, clear counter
instruction or power-up (neither a normal response nor
an exception response).

Sub-Function Data Request Data Response

00 0F 00 00 Slave not response count

16 Return Slave NAK Count

The function queries the number of requests addressed
to the slave for which it returns a NAK (negative Ac-
knowledge) exception response, since its last restart,
clear counters operation, or power–up. The excep-
tion responses are listed in section Modbus Exception
Codes.

Sub-Function Data Request Data Response

00 10 00 00 Slave NAK count

17 Return Slave Busy Count

The function queries the number of requests addressed
to the slave for which it returns a Slave Device Busy
Exception response, since its last restart, clear counters
operation, or power–up. The exception responses are
listed in section Modbus Exception Codes.

Sub-Function Data Request Data Response

00 11 00 00 Slave Busy count

18 Return Bus Character Overrun Count

The function queries the number of requests addressed
to the slave which it could not handled caused by a
character overrun condition, since its last restart, clear
counters operation, or power–up. A character overrun
occurs when the slave device receives characters faster
than it can handle them or by a hardware malfunction.

Sub-Function Data Request Data Response

00 12 00 00 Slave character overrun
count

Page 9 of 21

20 Clear Overrun Counter and Flag

Clears the overrun error counter in the addressed device
and reset its error flag.

Sub-Function Data Request Data Response

00 20 00 00 Echo request data

Example

Here is an example of a diagnostic test for device 23.
The device is asked to echo the data in the request
(sub-function 00).

Request Response

Field Hex Field Hex

Address 17 Address 17

Function 08 Function 08

Sub-Function high 00 Sub-function high 00

Sub-Function low 00 Sub-Function low 00

Sub-Function high AA Sub-function high AA

Sub-Function low 55 Sub-Function low 55

CRC16 high 5C CRC16 high 5C

CRC16 low 62 CRC16 low 62

11 (0x0B) Get Comm Event Counter
(Serial line only)

The event counter in a device is incremented every time
a request was successfully handled (responded) by the
device. The counter will not increased for exception
responses, poll or fetch event counter commands.
This function becomes handy if the master (or appli-
cation) want to know whether the messages to given
slave are all handled correctly. Normally this is done
by checking the event counter before and after a series
of messages.
The event counter can be reset via the Diagnostic func-
tion (0x08) using sub-function ’Restart Communica-
tion Option’ (00 01).
The function returns beside the event count a sta-
tus word indicating if the device is busy (already pro-
cesses a former command, status FFFFh) or not (status
0000h).

Request

Function code 1 Byte 0x0B

Response

Function code 1 Byte 0x0B

Status 2 Bytes 0x0000 or 0xFFFF

Event Count 2 Bytes 0x0000 to 0xFFFF

Error

Function code 1 Byte 0x8B

Exception code 1 Byte 1 or 4

Example

Here is an example of a request to read the event count
of remote device 35. The device responses with an
event count of 264 (0108h) and a not busy status.

Request Response

Field Hex Field Hex

Address 23 Address 23

Function 0B Function 0B

CRC16 low 59 Status high 00

CRC16 high 47 Status low 00

Event Count high 01

Event Count low 08

CRC16 low A2

CRC16 high DF

12 (0x0C) Get Comm Event Log
(Serial line only)

Function 12 is an effective way to gain more statisti-
cal information about the communication status of a
remote device. This command gives you the busy sta-
tus, the event count, the message count and a series
of bytes containing the status of the last up to 64 send
or receive operations handled by the device.
The meaning of the status and event count is already
described in Get Comm Event Counter. The message
counter contains the number of messages the remote
device has processed since its last restart, clear coun-
ters operation or power-up. You can query the message
counter also with Diagnostics function, sub-function 11
(Return Bus Message Count).

Request

Function code 1 Byte 0x0C

Response

Function code 1 Byte 0x0C

Byte Count 1 Byte N*

Status 2 Bytes 0x0000 or 0xFFFF

Event Count 2 Bytes 0x0000 to 0xFFFF

Message Count 2 Bytes 0x0000 to 0xFFFF

Event Bytes N-6 * Bytes

Page 10 of 21

Error

Function code 1 Byte 0x8C

Exception code 1 Byte 1 or 4

Coding of the event bytes

There are two kind of event bytes distinguished by the
highest bit 7. Two further events are coded with bit7
and bit 6 always set to zero.The bits marked as − are
not used.

Bits Description

7 6 5 4 3 2 1 0

1 x x x - - x - Remote device MODBUS Receive Event

1 x x x - - 1 - Communication error

1 x x 1 - - x - Character overrun

1 x 1 x - - x - Currently in Listen Only Mode

1 1 x x - - x - Broadcast received

0 1 x x - - x - Remote device MODBUS Send Event

0 1 x x x x x 1 Read Exception Sent (Code 1-3)

0 1 x x x x 1 x Slave Abort Exception Sent (Code 4)

0 1 x x x 1 x x Slave Busy Exception Sent (Code 5-6)

0 1 x x 1 x x x Slave Program NAK Exception Sent (Code 7)

0 1 x 1 x x x x Write Timeout Error Occurred

0 1 1 x x x x x Currently in Listen Only Mode

0 0 0 0 0 1 0 0 Remote device entered Listen Only Mode

0 0 0 0 0 0 0 0 Remote device initiated communication restart

Table 4: Event Bytes Coding

Remote device Modbus Receive Event
The remote device stores this kind of event every
time it received a request. The event is stored BE-
FORE the device starts the processing.

Remote device Modbus Sent Event
This event is stored by the remote device AFTER
processing a request. This happens always indepen-
dent of the response state (normal response, excep-
tion response or no response).

Remote device entered Listen Only Mode
The remote device records a switch into Listen Only
Mode by storing code 04h in the event queue.

Remote device initiated Communication Restart
The slave stores this event when its communication
port was restarted e.g. by using Diagnostics function
(08), sub-function 00 01 (Restart Communications
Option). Depending on a data field in that Diag-
nostics request the event queue is cleared before the
new event is stored.

Example

The following example shows a request to read the
communication event log in remote device 19.

Request Response

Field Hex Field Hex

Address 13 Address 13

Function 0C Function 0C

CRC16 low 0C Byte Count 08

CRC16 high 85 Status high 00

Status low 00

Event Count high 01

Event Count low 08

Message Count high 01

Message Count low 21

Event 0 04

Event 1 00

CRC16 low 49

CRC16 high B9

The remote device returns a status of 0000h (device
is not busy). The event count shows 0108h or 264
counted events. And the message counter says that
the device has processed 0121h or 289 messages. Ac-
cording to the byte counter there are two additional
events (8− 6 = 2).
The first or most recent communication event (Event
0) 04h indicates the device has currently entered the
Listen Only Mode3. The previous event is displayed
as Event 1 and shows that the device has received a
Communications Restart (00h).

15 (0x0F) Write Multiple Coils

This function complements the Write Single Coil
(which can set only one coil each time) and allows
to force a sequence of consecutive coils to either ON
or OFF. Coils are addressed starting at zero. Coil 1
therefore is referred as address 0.
The several ON/OFF states are packed as a byte se-
quence, starting with bit 0 in the first byte as state for
the first coil and so on. A set bit (logical 1) forces the
Coil (digital output) to be ON, logical 0 to be OFF.

Request

Function code 1 Byte 0x0F

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Outputs 2 Bytes 0x0001 to 0x07B0

Byte Count 1 Byte N*

Output values N* 1 Byte

3In the original MODBUS Application Protocol V1 1b3 this
event is displayed as hex 20 which seems a typo!

Page 11 of 21

The maximum quantity of 07B0h (decimal 1968) coils
is specified by the maximum length of a Modbus RTU
telegram which is 255 bytes.
Less the address, function number, start address, quan-
tity, byte count and CRC16 checksum the remaining
data size is 246 bytes or 1968 bits. N means the quan-
tity of coils / 8. If:

N

8
6= 0⇒ N = N + 1

Response

Function code 1 Byte 0x0F

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Outputs 2 Bytes 0x0000 to 0xFFFF

The remote device responses by returning the function
code, start address and quantity of outputs.

Error

Function code 1 Byte 0x8F

Exception code 1 Byte 1, 2, 3, 4

Example

The following example shows how to set 10 coils in
remote device 23 starting with coil number 40. The
desired output should be:

Coil 40 41 42 43 44 45 46 47 48 49

State ON ON OFF ON ON OFF OFF OFF ON ON

The request needs 2 bytes to hold the 10 coil output
bits.

Byte 1 Byte 2

Coil 47 46 45 44 43 42 41 40 - - - - - - 49 48

Bit 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1

The first byte addresses the coils 40 to 47 and is trans-
mitted as 1Bh whereas the least significant bit (LSB)
holds the state of coil 40. The coils 48 and 49 are
transmitted as 03h with the LSB addressing coil 48.
Unused bits (the bits 2...7 in the second byte) should
be zero filled.

Request Response

Field Hex Field Hex

Address 17 Address 17

Function 0F Function 0F

Starting Address high 00 Starting Address high 00

Starting Address low 27 Starting Address low 27

Output Quantity high 00 Output Quantity high 00

Output Quantity low 0A Output Quantity low 0A

Byte Count 02 CRC16 low 67

Output Byte 1 1B CRC16 high 31

Output Byte 2 03

CRC16 low 4F

CRC16 high 7E

16 (0x10) Write Multiple Registers

Similar to Write Single Register but allowing to write
a consecutive number of 1 to 123 registers (the max-
imum data payload for this Modbus telegram is 246
bytes) in one request. The data is passed as two bytes
for every register in the request data field. The address
counting starts from zero.

Request

Function code 1 Byte 0x10

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 0x0001 to 0x007B

Byte Count 1 Byte 2 x N*

Register Values N* 2 Bytes Value

N* is quantity of registers (not bytes).
Please note! Even that the number of registers is
passed as register quantity the function still demands
a byte count.

Response

Function code 1 Byte 0x10

Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity of Registers 2 Bytes 0x0001 to 0x007B

The remote device responses by returning the function
code, start address and quantity of registers.

Error

Function code 1 Byte 0x90

Exception code 1 Byte 1, 2, 3, 4

Here is an example to write 3 registers in the remote
device 23. The registers start at address 50, the reg-
ister values are 100 (0064h), 200 (00C8h) and 300
(012Ch).

Page 12 of 21

Request Response

Field Hex Field Hex

Address 17 Address 17

Function 10 Function 10

Starting Address high 00 Starting Address high 00

Starting Address low 31 Starting Address low 31

Register Quantity high 00 Register Quantity high 00

Register Quantity low 03 Register Quantity low 03

Byte Count 06 CRC16 low D3

Register Value high 00 CRC16 high 31

Register Value low 64

Register Value high 00

Register Value low C8

Register Value high 01

Register Value low 2C

CRC16 low 70

CRC16 high 97

17 (0x11) Report Slave ID
(Serial line only)

This function is intended to query the type, running
status and other information of a given remote de-
vice. The response includes bytes which are specified
by Modbus as device depending. Processing the data
therefore is not standardized and difficult. It comes as
no surprise that this function is rarely supported in the
slaves and even rarer in the master devices.

Request

Function code 1 Byte 0x11

The data returned in a normal response depends on
the device. A normal response looks like:

Response

Function code 1 Byte 0x11

Byte Count 1 Byte

Remote Device ID Device specific

Running Status 1 Byte 0x00=OFF, 0xFF=ON

Additional Data

Error

Function code 1 Byte 0x91

Exception code 1 Byte 1 or 4

The following example shows the response of a hypo-
thetical device on address 100. The additional data
field returns the vendor name, device model name and
serial number as a comma separated ASCII string. For
example:

IFTOOLS,IF-Sensor,101305023

The data in hex:

49 46 54 4f 4f 4c 53 2c

49 46 2d 53 65 6e 73 6f

72 2c 31 30 31 33 30 35

30 32 33

The byte count is 29 (Remote Device ID=1 , Running
status=1 and data field length=27). The individual
(hypothetical) device ID is 55h. The device itself is
running (Running State FFh).

Request Response

Field Hex Field Hex

Address 64 Address 64

Function 11 Function 11

CRC16 low EB Byte Count 1D

CRC16 high 7C Remote Device ID 55

Running Status FF

Additional Data see above...

CRC16 low 58

CRC16 high FC

Please note! This is just an example! A correct eval-
uation by the application is only possible if you know,
what kind of data the requested remote device returns!

20 (0x14) Read File Record

This (and Write File Record too) is one of the more
obscure commands in Modbus and rarely provided
by Modbus devices. Nevertheless there exist devices
which exclusively use the function to make some inter-
nal information accessible.
As the name suggests the function performs a file
record read. A file is organized as a list of records
(up to 10000 and indexed from 0) which are refer-
enced via sub-request fields. The function allows to
request one or more records (or data blocks) in one
command by string several sub-request fields together.
Every sub-request field is 7 bytes long and serves to
identify the file, data location and data size within the
file. It requires the following information:

The reference type 1 Byte Always 6

The file number (see note be-
low)

2 Bytes 0x0001 to 0xFFFF

The starting record number
(address) within the file

2 Bytes 0...9999 (0x270F)

The record length to be read 2 Bytes See note below!

Please note!

Page 13 of 21

Even if the allowed file number range is up to 0xFFFF,
[2] recommend not to use numbers greater than 10 to
avoid interoperability with legacy equipment.
And: The number of requested bytes given by the in-
formation in the sub-request fields must not exceed
the maximum allowable Modbus message length of 256
bytes!

Request

Function code 1 Byte 0x14

Byte Count 1 Byte 7 to 245 bytes

SubReq x, Ref. Type 1 Byte always 6

SubReq x, File Number 2 Bytes 0x0001 to 0xFFFF

SubReq x, Record Number 2 Bytes 0x0000 to 0x270F

SubReq x, Record Length 2 Bytes N

SubReq x+1, ...

A normal response contains a series of data, one for
each sub-request.

Response

Function code 1 Byte 0x14

Response Data Length 1 Byte 7 to 245 bytes

SubReq x, File resp. length 1 Byte 7 to 245 bytes

SubReq x, Reference Type 1 Byte always 6

SubReq x, Record Data N * 2 Bytes

SubReq x+1, ...

The Response Data Length field is the total number
of bytes of all sub-responses. Every sub-response also
contains an individual length field of its own (File resp.
length).

Error

Function code 1 Byte 0x94

Exception code 1 Byte 1, 2, 3, 4, 8

In the following example the master requests two
records from remote device 8. The first record is in
file 4 and starts at address 1. It’s size is 2 registers (or
2 x 16 byte). The second record is in file 3. It starts
at address 9 and also contains 2 registers. Note that
the reference is always 6.

Request Response

Field Hex Field Hex

Address 08 Address 08

Function 14 Function 14

Byte Count 0E Resp. Data Len 0C

Continued on next page

Continued from previous page

Request Response

SubReq1, Ref. Type 06 SubReq1, File resp. Len 05

SubReq1, File No. high 00 SubReq1, Ref. Type 06

SubReq1, File No. low 04 SubReq1, Reg. Data high 0D

SubReq1, Rec. No. high 00 SubReq1, Reg. Data low FE

SubReq1, Rec. No. low 01 SubReq1, Reg. Data high 00

SubReq1, Rec. Len high 00 SubReq1, Reg. Data low 20

SubReq1, Rec. Len low 02 SubReq2, File resp. Len 05

SubReq2, Ref. Type 06 SubReq2, Ref. Type 06

SubReq2, File No. high 00 SubReq2, Reg. Data high 33

SubReq2, File No. low 03 SubReq2, Reg. Data low CD

SubReq2, Rec. No. high 00 SubReq2, Reg. Data high 00

SubReq2, Rec. No. low 09 SubReq2, Reg. Data low 40

SubReq2, Rec. Len high 00 CRC16 low B0

SubReq2, Rec. Len low 02 CRC16 high A7

CRC16 low 22

CRC16 high AF

As mentioned before: Function 20 is very rarely used.
But it provides a universal method to make different
kinds of data structures accessible by a single Modbus
function4. For instance to map data located at differ-
ent addresses (in a device memory) into one range. On
the downside is: It’s a complicated call and takes great
effort to unravel the data in the response.

21 (0x15) Write File Record

Write File Function is the counterpart of Read File
Record described in the preceding section. It writes
the content of one or more consecutive registers (or
data blocks) into an external (or extended memory)
file. Like in the Read File Record function the data
is organized as sub-requests. Every sub-request is fol-
lowed by the data to be written.

The reference type 1 Byte Always 6

The file number 2 Bytes 0x0001 to 0xFFFF

The starting record num-
ber (address) within the
file

2 Bytes 0...9999 (0x270F)

The record length to be
written

2 Bytes N

The data to be written N * 2 Bytes

Please note! As usual the passed sub-requests must
not exceed the maximum length of a Modbus telegram.
And: As in Read File Record the file number must not
exceed 10!

4The original name of this function was ’Read General Refer-
ence’ which seems to describe it more precise.

Page 14 of 21

Request

Function code 1 Byte 0x15

Request data length 1 Byte 9 to 251 bytes

SubReq x, Ref. Type 1 Byte always 6

SubReq x, File Number 2 Bytes 0x0001 to 0xFFFF

SubReq x, Record Number 2 Bytes 0x0000 to 0x270F

SubReq x, Record Length 2 Bytes N

SubReq x, Record data N * 2 Bytes

SubReq x+1, ...

The normal response is the echo of the request.

Response

Function code 1 Byte 0x15

Request data length 1 Byte 9 to 251 bytes

SubReq x, Ref. Type 1 Byte always 6

SubReq x, File Number 2 Bytes 0x0001 to 0xFFFF

SubReq x, Record Number 2 Bytes 0x0000 to 0x270F

SubReq x, Record Length 2 Bytes N

SubReq x, Record data N * 2 Bytes

SubReq x+1, ...

Error

Function code 1 Byte 0x94

Exception code 1 Byte 1, 2, 3, 4, 8

An example of a request to write one group of refer-
ences into remote device 8 is listed below. The group
consists of three registers in file 4, starting at register
7 (address 0007).

Request Response

Field Hex Field Hex

Address 08 Address 08

Function 15 Function 15

Byte Count 0D Byte Count 0D

SubReq1, Ref. Type 06 SubReq1, Ref. Type 06

SubReq1, File No. high 00 SubReq1, File No. high 00

SubReq1, File No. low 04 SubReq1, File No. low 04

SubReq1, Rec. No. high 00 SubReq1, Rec. No. high 00

SubReq1, Rec. No. low 07 SubReq1, Rec. No. low 07

SubReq1, Rec. Len high 00 SubReq1, Rec. Len high 00

SubReq1, Rec. Len low 03 SubReq1, Rec. Len low 03

SubReq1, Reg. Data high 06 SubReq1, Reg. Data high 06

SubReq1, Reg. Data high AF SubReq1, Reg. Data high AF

SubReq1, Reg. Data high 04 SubReq1, Reg. Data high 04

SubReq1, Reg. Data high BE SubReq1, Reg. Data high BE

SubReq1, Reg. Data high 10 SubReq1, Reg. Data high 10

SubReq1, Reg. Data high 0D SubReq1, Reg. Data high 0D

CRC16 low 10 CRC16 low 10

Continued on next page

Continued from previous page

Request Response

CRC16 high 5D CRC16 high 5D

22 (0x16) Mask Write Register

This function can be used to set or clear certain bits in
a holding register by a logical operation of the content
with an AND/OR mask register.
To clear individual bits in the holding register is
achieved by clear these bits in the AND mask. To
set bits by set the desired bits in the OR mask.
Registers are addressed starting at zero, register 1
therefore means register address 0.

Request

Function code 1 Byte 0x16

Reference Address 2 Bytes 0x0000 to 0xFFFF

AND Mask 2 Bytes 0x0000 to 0xFFFF

OR Mask 2 Bytes 0x0000 to 0xFFFF

The normal response is the echo of the request.

Response

Function code 1 Byte 0x16

Reference Address 2 Bytes 0x0000 to 0xFFFF

AND Mask 2 Bytes 0x0000 to 0xFFFF

OR Mask 2 Bytes 0x0000 to 0xFFFF

Error

Function code 1 Byte 0x96

Exception code 1 Byte 1, 2, 3, 4

The following example sets the first 4 bits and clears
the upper 2 bits in register 5 of the remote device 20.
The bits 5...14 remain in their current state.

Request Response

Field Hex Field Hex

Address 14 Address 14

Function 16 Function 16

Reference address high 00 Reference address high 00

Reference address low 04 Reference address low 04

AND mask high 3F AND mask high 3F

AND mask low FF AND mask low FF

OR mask high 00 OR mask high 00

OR mask low 0F OR mask low 0F

CRC16 low BA CRC16 low BA

CRC16 high D5 CRC16 high D5

Let us assume the current register content is 0x7CA9.

Page 15 of 21

0x7CA9 = 0111 1100 1010 1001

AND = 0011 1111 1111 1111

=> 0011 1100 1010 1001

OR = 0000 0000 0000 1111

=> 0011 1100 1010 1111

The result after apply the command is 0x3CAF.

23 (0x17) Read/Write Multiple Registers

This function combines a read and write operation
whereas the write is executed (in the remote device)
before the read. The registers for the read and write
access (mostly holding registers) are addressed from
zero. A register start address of 15 therefore is register
number 16.

Request

Function code 1 Byte 0x17

Read Starting Address 2 Bytes 0x0000 to 0xFFFF

Quantity to Read 2 Bytes 0x0001 to 0x007D

Write Starting Address 2 Bytes 0x0001 to 0xFFFF

Quantity to Write 2 Bytes 0x0001 to 0x0079

Write Byte Count 1 Byte 2 x N

Write Register Values N * 2 Bytes

In a normal response the remote device returns the
data that were read.

Response

Function code 1 Byte 0x17

Byte Count 1 Byte 2 x N

Read Register Values N * 2 Bytes

Error

Function code 1 Byte 0x97

Exception code 1 Byte 1, 2, 3, 4

The following example reads 2 registers starting at reg-
ister 100 and writes 1 register (value 0xABCD) starting
at register 200. The remote device address is 5.

Request Response

Field Hex Field Hex

Address 05 Address 05

Function 17 Function 17

Read Start Address high 00 Byte Count 04

Read Start Address low 63 Read Register high 00

Read Quantity high 00 Read Register low 01

Read Quantity low 02 Read Register high 00

Write Start Address high 00 Read Register low 02

Write Start Address low C7 CRC16 low 6C

Write Quantity high 00 CRC16 high E6

Write Quantity low 01

Write Byte Count 02

Write Register high AB

Write Register low CD

CRC16 low 47

CRC16 high 9C

24 (0x18) Read FIFO Queue

This function reads the contents of a FIFO (First-In-
First-Out) register queue in a remote device. The FIFO
is addressed like a holding register but returns number
of the available FIFO (register) items followed by up
to 31 register values.
Please note! According to the Modbus specifications
the function reads the queue content WITHOUT clear-
ing them5.

Request

Function code 1 Byte 0x18

FIFO Pointer Address 2 Bytes 0x0000 to 0xFFFF

In the request we do not have to pass the number of
registers we want to read. Just the register address
holding the FIFO queue is enough.

Response

Function code 1 Byte 0x18

Byte Count 2 Bytes 0x0000 to 0xFFFF

FIFO Count 2 Bytes 0 < N < 31

FIFO Value Registers N * 2 Bytes

N means the available FIFO values. In a normal re-
sponse N is always ≤ 31. If the FIFO holds more than
32 items (N is > 32) an exception response is returned
with error code 3 (Illegal Data Value)6.

5Question: How is the read data removed from the queue?
Does this happen automatically by the read access?

6How can the application deal with such a situation?

Page 16 of 21

Error

Function code 1 Byte 0x98

Exception code 1 Byte 1, 2, 3, 4

In the example below we access the FIFO queue in re-
mote device 5. The FIFO is accessible via register ad-
dress 0x04DE. The FIFO holds 2 register values. The
first register contents 0x01B8 (decimal 440), the sec-
ond one 0x1204 (decimal 4612).

Request Response

Field Hex Field Hex

Address 05 Address 05

Function 18 Function 18

FIFO Pointer Address high 04 Byte Count high 00

FIFO Pointer Address low DE Byte Count low 06

CRC16 low 02 FIFO Count high 00

CRC16 high 77 FIFO Count low 02

FIFO Reg1 high 01

FIFO Reg1 low B8

FIFO Reg2 high 12

FIFO Reg2 low 04

CRC16 low 59

CRC16 high 6D

43 (0x2B) Encapsulated Interface Transport

This function was mainly developed for tunneling
other protocols inside Modbus telegrams, especially
CanOpen. Additional it provides a feature to query
device information like model number, serial number,
etc. The kind of the encapsulated data is specified
by the so called MEI (Modbus Encapsulated Interface)
type field which follows immediately after the Modbus
function number. It is a unique number assigned by
Modbus with a reserved range from 0 to 255 except
for the MEI type number 13 and 14 which have an
already predefined meaning7.
A simple request without digging into the MEI data
looks like:

Request

Function code 1 Byte 0x2B

MEI Type 1 Byte 0x0D or 0x0E

MEI type specific data n Bytes

7For example the MEI Type 13 (0x0D) is a MODBUS Assigned
Number licensed to CiA for the CANopen General Reference.
MEI Type 14 serves as a general function to provide detail
device information.

Response

Function code 1 Byte 0x2B

MEI Type 1 Byte Echo of MEI type in request

MEI type specific data n Bytes

Error

Function code 1 Byte 0xAB

Exception code 1 Byte 1, 2, 3, 4

The MEI transport service is meant to be interface
independent. Thus any specific behaviour or policy
required by the interface must handled by the interface
itself. That includes the transaction processing, error
handling and so on.

MEI 13 - CANopen Request and Response PDU

The MEI type specific data is defined by CANopen and
not part of the Modbus specification. We therefore
can only provide some small examples to give a first
impression how MEI works here. For more information
see section Further links. A CANopen related request
looks like:

Function code 1 Byte 0x2B

MEI Type 1 Byte 0x0D

CANopen Protocol option fields 2 to 5 Bytes

CANopen Address and data fields N Bytes

The content of the CANopen option and data/address
fields determine how the interface has to handle
the message and cannot be part of this article.
The following telegram examples are intended only to
illustrate the tunneling from the Modbus point of view.

The telegram below reads out the CANopen object
6042h:00h. The slave (Modbus) address is 5. They
are drawn from de.nanotec.com.

SA FC MEI CANopen Data CRC

05 2B 0D 00 00 01 60 42 00 00 00 00 02 7F 0F

The response looks like:

SA FC MEI CANopen Data CRC

05 2B 0D 00 00 01 60 42 00 00 00 00 02 00 00 60 34

MEI 14 - Read Device Identification

This function is used to query the identification and
other information according to the physical and func-
tion description of a remote device. It does not provide
a running state as function Report Slave ID.

Page 17 of 21

https://de.nanotec.com/produkte/manual/CL3E_CAN_USB_EN/bus%252Fmodbus%252Fencapsulated_interface_transport.html/

The Read Device Identification function divides the
searchable information in a number of data elements
called objects. Each object has it own ID and belongs
to one of four categories.

Object
ID

Object Name
Description

Type MO Category

0x00 VendorName ASCII
String

Mandatory Basic

0x01 ProductCode ASCII
String

Mandatory Basic

0x02 MajorMinorRevision ASCII
String

Mandatory Basic

0x03 VendorURL ASCII
String

Optional Regular

0x04 ProductName ASCII
String

Optional Regular

0x05 ModelName ASCII
String

Optional Regular

0x06 UserApplicationName ASCII
String

Optional Regular

0x07
..
0x7F

Reserved Optional Regular

0x80
..
0xFF

Private objects may be op-
tional defined. The range
0x80...0xFF is product de-
pendant.

Device
depen-
dent

Optional Extended

There are three categories displayed in the table above.
A fourth one allows the individual access of a specific
single object (category independent) by passing the ob-
ject ID in the request. The categories are numbered
from 1 to 4.

1 Get the basic device information

2 Get the regular device information

3 Get the extended device information

4 Get one specific device information

Request

Function code 1 Byte 0x2B

MEI Type 1 Byte 0x0E

Read Device ID Code 1 Byte 01/02/03/04

Object ID 1 Byte 0x00 to 0xFF

The Object ID field has a double meaning. When re-
questing a specific device information it holds the Ob-
ject ID of the required data. For example 02h for the
Major Minor Revision.
If the master requests a category the response may not
fit in one telegram and several transactions may are
necessary, see examples below. The master therefore
set the Object ID to 0 in the very first request.

In case of further transactions the master receives the
next object ID to be requested from the slave in the
response field Next Object ID additional with a FFh

in the More follows field (see response table below).
The master then continues the category request with
the new object ID.

Response

Function code 1 Byte 0x2B

MEI Type 1 Byte 0x0E

Read Device ID Code 1 Byte 01/02/03/04

Conformity Level 1 Byte 0x01 or 0x02 or 0x03 or 0x81
or 0x82 or 0x83

More follows 1 Byte 0x00 or 0xFF

Next Object ID 1 Byte Object ID number

Number of Objects 1 Byte

List of Objects ...

Object ID 1 Byte

Object Length 1 Byte

Object Value x Bytes Depending on object

The Conformity Level field normally contains the
value of the requested category. But if the master
requests a category which is not supported by the re-
mote device, the slave responses in accordance with
its actual conformity level. Since the answer is not
as expected, the Confirmation Level field tells the
master how to interpret the data instead.
A response can contain one or more information ob-
jects. While objects have no predefined length (basic
and regular objects are ASCII strings), every object in
the response has also a length descriptor.

Error

Function code 1 Byte 0xAB

Exception code 1 Byte 1, 2, 3, 4

In case of an illegal category the remote device re-
sponses with an exception code 03 (illegal data value).
If the master requests a special device information
which is not supported by the slave, the response is
an exception code 02 (illegal data address).

Examples

In the following example the requested information
(basic device information, category 1) is sent in one
response.

Page 18 of 21

Request Response

Field Hex Field Hex

Address 08 Address 08

Function 14 Function 14

Read Device ID Code 01 Read Device ID Code 01

Object ID 00 Conformity Level 01

CRC16 low 1D More follows 00

CRC16 high 88 Next Object ID 00

Number of Objects 03

Object1 ID 00

Object1 Lenght 07

Object1 Value ”IFTOOLS”

Object1 ID 01

Object1 Lenght 06

Object1 Value ”SENSOR”

Object1 ID 02

Object1 Lenght 05

Object1 Value ”V1.01”

CRC16 low A6

CRC16 high A7

The next examples shows again the request of the basic
device information (category 1) but now assumes that
the information does not fit in one Modbus frame and
therefore needs two transactions.
The first transaction only contains the information for
the objects 0 (Vendor Name) and 1 (Product Code).
It looks like:

Request Response

Field Hex Field Hex

Address 08 Address 08

Function 14 Function 14

Read Device ID Code 01 Read Device ID Code 01

Object ID 00 Conformity Level 01

CRC16 low 1D More follows FF

CRC16 high 88 Next Object ID 02

Number of Objects 03

Object1 ID 00

Object1 Lenght 19

Object1 Value ”The
Fieldbus
Company
Ltd.”

Object1 ID 01

Object1 Lenght 16

Object1 Value ”Fieldbus
Company
Typ 1”

CRC16 low 66

CRC16 high DE

The field More follows indicates now, that there

are pending information starting with the object ID
02 (field Next Object ID) and the master therefore
initiates a second request.

Request Response

Field Hex Field Hex

Address 08 Address 08

Function 14 Function 14

Read Device ID Code 01 Read Device ID Code 01

Object ID 02 Conformity Level 01

CRC16 low 1D More follows 00

CRC16 high 88 Next Object ID 00

Number of Objects 03

Object1 ID 02

Object1 Lenght 05

Object1 Value ”V1.01”

CRC16 low 02

CRC16 high 38

Since this is the last transaction (no further informa-
tion), the More follows field is again 00. The same
is valid for the Next Object ID which is also set to
00 by the responding device.

Modbus Exception Codes

When the master sends a request to a slave, four pos-
sible events may occur.

Normal response
The slave receives the master request without an
error and can handle it properly. It then returns a
normal response.

No response (timeout)
The slave with the given address does not exist or
detects an error in the request. In both cases no
response is returned to the master.

Erroneous response
The master detects a faulty response (invalid tele-
gram frame, checksum error). The reaction depends
on the application, usually the master repeats the
request several times.

Exception response
The slave receives the request error-free but can-
not process the request properly. For instance if the
master tries to read/write a not existing IO address.
The slave then will return an exception response to
inform the master about the error.

All Modbus function codes in a request or response
have a most significant bit (MSB) of 0 (the function

Page 19 of 21

code is below hex 80). In case of an error, the slave set
the MSB to 1, so the function code is greater as hex
80. The data field contains the error code as a single
byte.

Address Function Code Data Checksum

Echo address Echo code + 80hex Exception code Checksum

The following table lists all exception codes. Please
note that not all codes are supported by every applica-
tion.

Code Name Description

01 ILLEGAL FUNCTION The slave does not support the
requested function or is not in
the state to handle it.

02 ILLEGAL DATA
ADDRESS

The requested data address is
not in the allowed IO range of
the slave or not writable (read-
only).

03 ILLEGAL DATA
VALUE

Invalid quantity of requested
data.

04 SLAVE DEVICE
FAILURE

An unrecoverable error occurs
while the slave performs the re-
quested action.

05 ACKNOWLEDGE Private function code (applica-
tion dependent). A slave can
use this code to signal the mas-
ter that it needs more time to
process the request. The mas-
ter itself then can issue one
or more Poll Program Complete
message(s) (also private) to de-
termine if the processing is com-
plete.

06 SLAVE DEVICE
BUSY

The slave is busy due to pro-
cessing a long duration program
command. This exception re-
sponse informs the master to re-
peat the request later again.

08 MEMORY PARITY
ERROR

Used in conjunction with func-
tions 20 and 21 and reference
type 6. Indicates a consistency
check failure in the extended file
area.

0A GATEWAY PATH
UNAVAILABLE

Gateway cannot route the mes-
sage. This usually means a mis-
configured or overloaded gate-
way.

0B GATEWAY TARGET
DEVICE FAILED TO
RESPONSE

Error response from a gateway
that the addressed device does
not response.

Table 5: Modbus Error Codes

Distinguish requests from responses

The Modbus specification does not provide a telegram
flag or information field to determine the sender (mas-
ter or slave) of the telegram.
An external observer (for instance an field-bus analyzer
tapping a 2-wire half-duplex RS485 bus) can only fig-
ure out the origin of a data sequence by examine the
telegram content, telegram flow and sometimes only
by the timing.
The following table compares the length of both, re-
quest and response. The displayed lengths include the
address and checksum bytes!

Function Request Response

01 Read Coils 8 6...255

02 Read Discrete Input 8 6...255

03 Read Holding Registers 8 7,9...255

04 Read Input Registers 8 7,9...255

05 Write Single Coil 8 8

06 Write Single Register 8 8

07 Read Exception Status 4 5

08 Diagnostics 8,10...256 8,10...256

11 Get Comm Event Counter 4 8

12 Get Comm Event Log 4 12...76

15 Write Multiple Coils 11...255 8

16 Write Multiple Registers 11,13...255 8

17 Report Slave ID 4 7...256

20 Read File Record 12,19...250 9,11...255

21 Write File Record 14,16...254 14,16...254

22 Mask Write Register 10 10

23 Read/Write Multiple Registers 13,15...255 5,7...255

24 Read Fifo Queue 6 10,12...70

43 Encapsulated Interface Transport 6...256 6...256

Table 6: Request and response telegram lengths

Telegrams which are clearly distinguishable from each
other (different length or size) are marked as dark gray.
Other functions we can keep apart because the request
has always an odd number of bytes whereas the re-
sponse has always an even length. These are marked
as light gray.
The remaining functions which we cannot lightly sep-
arate in requests or responses are remaining in white.
We may keep apart some of them by looking for spe-
cial data pattern (preset field contents) in the telegram
sequence. But other functions even have identical re-
quests and responses (the normal response is just the
echo of the request), for example the basic functions
5 (Write Singe Coil) and 6 (Write Single Register).
We can interprete two such successive telegrams as a
request and response - or - as two requests without
response!

Page 20 of 21

An observer can try to determine the origin of these
telegrams by analysing the timing. If the time interval
between the former and current telegram is between
the specified response time, it can take it as a response,
otherwise as a perhaps second try of the master.
Nevertheless there is still a chance, that the response
just exceed the allowed response time.
And most important! All these described methods
depend on the correctness of the transmitted telegram
frames!

But what are the possibilities to assign single data
bytes to the master or to a slave in a half-duplex bus
where every bus participant shares the same two lines?

The IFTOOLS MSB-RS485-PLUS field-bus analyzer
was specially developed to target this problem. The
analyzer provides a so called segment mode analysis.
This special feature allows to insert the analyzer into
the bus between the master and the slaves. Work-
ing as a transparent data router between two bus seg-
ments (master segment and slave segment) the ana-
lyzer records not only all transmitted bus data with
precise time information. It also detects the direction
(or origin) of every data byte.
Thus even invalid or erroneous data sequences are as-
signed absolutely reliable to the master or slave seg-
ment - a crucial requirement when analyzing faulty
Modbus ASCII and RTU transmissions.

Conclusion

To rely only on the analysis of the telegram content,
telegram flow or timing may produce good in results
in most cases but it fails if the bus transmission con-
tains corrupted telegrams (by faulty bus participants or
caused by neglected timing specifications). In this case
a classification between sender and recipient cannot
be made any longer since the initial data are already
wrong.
Without any additional direction information (like as
the segment mode provided by the IFTOOLS MSB-
RS485 analyzers) the cause of the failure (master or
slave) question remains open.

Further links

https://www.modbus.org
Modbus over serial line V1.pdf
Modbus Application Protocol V1 1b3.pdf
Modbus on Wikipedia
IFTOOLS MSB-RS485 Analyzer
Modbus Master simulation via serial port

References

[1] MODBUS over Serial Line, Specification and Im-
plementation Guide, V1.02

[2] Modbus Application Protocol Specification
V1.1b3

Page 21 of 21

https://www.modbus.org
https://www.modbus.org/docs/Modbus_over_serial_line_V1.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
https://en.wikipedia.org/wiki/Modbus
https://www.iftools.com/analyzer/msb-rs485/index.en.php
https://www.iftools.com/tools/cleverterm/index.en.php

