
Manual

Version 7.0.2

www.iftools.com

Inhaltsverzeichnis

1 Analysing of RS232 connections 1
1.1 Special serial driver . 1
1.2 Y-Cable . 2

1.2.1 Y-Cable with combined TxD and RxD line 2
1.2.2 X-Cable with separate TxD and RxD lines 2

1.3 Sampling . 2

2 MSB-RS232 Analyzer 3
2.1 Advantages of a hardware solution 3
2.2 Innovative software concept . 4
2.3 Application fields . 5

3 Features & Benefits 7

4 Specifications 9

5 Program Installation 13
5.1 Installation under Windows . 13
5.2 Installation under Linux . 14

5.2.1 Manual installation under Linux 14
5.2.2 Installation for all users 15

5.3 Program Updates . 16

6 Connection of the analyser 17
6.1 RS232 connectors . 17
6.2 RS232 signal levels . 18
6.3 Control LEDs . 18

6.3.1 Green Leds . 18
6.3.2 Red Leds . 19

6.4 Uninterruptable analysis . 19

7 Program start 21
7.1 User Interface . 22
7.2 Configure a record . 23

7.2.1 Transmission setup . 23
7.2.2 Signals . 25
7.2.3 Record mode . 26
7.2.4 Autosave . 28
7.2.5 General . 28

7.3 Start a record . 28
7.4 Status display . 29

7.4.1 Display I . 29
7.4.2 Display II . 29
7.4.3 Display III . 30

7.5 The analysis tools . 30
7.6 Save a recording . 31
7.7 Save a session as a project . 31
7.8 Open an earlier recording . 32

i

INHALTSVERZEICHNIS

7.9 Open an earlier session (project) 32
7.10 Last opened recordings and projects 32
7.11 Drag and drop . 33
7.12 Connecting multiple analysers 33
7.13 Automatical start after computer boot 33

7.13.1 Activate the autostart feature under Windows 34
7.13.2 Activate the autostart feature under Linux 34

7.14 Short commands . 35
7.15 Additional program arguments 35
7.16 Special program parameters . 38

8 The MultiView design 39
8.1 Synchronization . 39

8.1.1 Follow (autoscroll) . 40
8.1.2 Locked (fixed) . 40
8.1.3 Linked . 40

8.2 Views (displays) . 40
8.2.1 Virtual Ledtester . 41
8.2.2 DataView - Data Monitor 41
8.2.3 EventView - Event Monitor 41
8.2.4 ProtocolView - Protocol Monitor 41
8.2.5 SignalView - Signal Monitor 41
8.2.6 Regions . 42

8.3 Copy Views . 42
8.4 Default settings for Views . 42

9 Session management 43
9.1 Projects . 43
9.2 Store and reload projects . 44
9.3 Automatic storing of a session 44

10 The virtual Ledtester 47
10.1 The toolbar . 48

11 The Data View 49
11.1 User Interface . 49

11.1.1 Display of data errors 50
11.1.2 Synchronizing . 51
11.1.3 Data direction . 52
11.1.4 Addressing the window content 52

11.2 Data selection . 52
11.2.1 Copy and Paste . 53
11.2.2 Save data selection . 53
11.2.3 Export a data selection 53

11.3 Settings . 54
11.3.1 Columns and data format 55
11.3.2 Coloring data . 55
11.3.3 Change the font . 55

11.4 The data inspector . 55
11.5 Searching the record . 56

ii

INHALTSVERZEICHNIS

11.5.1 Pattern search . 56
11.5.2 Search for time distances 58
11.5.3 Search for transmission errors 59

11.6 Integrated Lua . 59
11.6.1 How does it work? . 60
11.6.2 Sorted results . 62
11.6.3 Select and run a Lua script 63
11.6.4 Script errors . 63
11.6.5 Debugging . 64
11.6.6 Template file location . 64
11.6.7 Import a template . 65
11.6.8 How can I remove waste scripts 65
11.6.9 Limitations . 65

11.7 DataView specific Lua extensions 66
11.7.1 The data module . 66
11.7.2 The debug module . 67

11.8 The toolbar . 70
11.9 Short commands . 71

12 The Event View 73
12.1 User Interface . 73

12.1.1 Each line is one event 74
12.1.2 All event types at a glance 75
12.1.3 Signal alterations . 75

12.2 Navigation through the event list 75
12.3 Event search with the LevelFinder 76

12.3.1 Enter a search pattern 76
12.3.1.1 Formulate a level condition 77
12.3.1.2 Formulate a data error 77
12.3.1.3 Formulate a data value 77

12.3.2 Search input and search 78
12.3.3 Search for signal changes 79
12.3.4 Searching with time specification 79

12.4 Mark a selection . 80
12.4.1 Save a selection as a region 80
12.4.2 Export a selection as CSV file 81

12.5 Measure time distances . 83
12.6 The toolbar . 83
12.7 Short commands . 84

13 The Protocol View 85
13.1 User Interface . 86

13.1.1 Telegram window . 86
13.1.2 Synchronizing . 87
13.1.3 Data direction . 87
13.1.4 Open an identical view 87
13.1.5 Pin your settings . 87
13.1.6 Goto a given telegram number 88
13.1.7 Filter control . 88
13.1.8 Choosing a range . 88

iii

INHALTSVERZEICHNIS

13.2 Protocol templates . 88
13.2.1 Select a protocol template 89
13.2.2 Modify a protocol template 89
13.2.3 Individual protocol setup 90
13.2.4 Write a new template . 90
13.2.5 Template file location . 91
13.2.6 Import a template . 91

13.3 Template language syntax . 91
13.3.1 Splitting the data stream into telegrams 92
13.3.2 Individual displaying of the datagrams 98

13.4 Filtering . 115
13.4.1 Show and hide (filter) complete telegrams 115
13.4.2 Choose between different telegram display formats . . . 119

13.5 New filter mechanism . 120
13.6 Individual Filter dialogs . 123
13.7 Export Telegrams . 125

13.7.1 How the program determines the export fields 125
13.7.2 The export dialog . 126
13.7.3 Export as CSV file . 127
13.7.4 Export as HTML . 127
13.7.5 Export as text . 127
13.7.6 Export as Latex . 127
13.7.7 Special notes about the caption labeling 128

13.8 ProtocolView specific Lua extensions 129
13.8.1 The box module . 129
13.8.2 The debug module . 131
13.8.3 The event module . 134
13.8.4 The linestates module 136
13.8.5 The sequences module 138
13.8.6 The shared module . 139
13.8.7 The telegram type . 140
13.8.8 The telegrams module 146

13.9 Settings . 148
13.9.1 Show additional telegram information 148
13.9.2 Change the font . 148
13.9.3 Set an individual background 149
13.9.4 Lua compatibility . 149

13.10 The Toolbar . 149
13.11 Short commands . 151
13.12 Alterations to former versions 151

13.12.1Incompatible changes 151
13.12.2Obsolete functions and modules 151

14 The Signal View 155
14.1 Signal representation . 156
14.2 Navigation . 157

14.2.1 Navigation and zooming by mouse wheel 158
14.2.2 Shift with the hand cursor 158

14.3 The time base . 158
14.4 Undo and Redo . 158

iv

INHALTSVERZEICHNIS

14.5 Signal control field . 159
14.5.1 Remove or hide a signal 159
14.5.2 Signal colour . 159
14.5.3 Data overlay . 159
14.5.4 Invert signal . 160
14.5.5 Rearrange signal order 160

14.6 Settings dialog . 160
14.6.1 Common settings . 160
14.6.2 Graphical effects . 160

14.7 Cursor operating . 161
14.7.1 Signal selection . 161
14.7.2 Regions . 162

14.8 Measure data frames with the frame ruler 162
14.8.1 Adjust the data frame ruler 163

14.9 Synchronizing . 164
14.10 The toolbar . 164
14.11 Short keys . 165

15 Regions 167
15.1 Switch regions on/off . 167
15.2 Remove a region . 168
15.3 Rename a region . 168
15.4 Move regions into view . 168
15.5 Region storage . 168
15.6 Region properties . 169

16 The Editor 171
16.1 Open the editor . 172
16.2 Start with a new script . 172
16.3 Interactive coding . 172

16.3.1 Lua script errors . 173
16.4 Highlight individual keywords 173
16.5 Find . 173
16.6 Find and replace . 174
16.7 Code folding . 174
16.8 Editor settings . 174
16.9 Colour wizard . 174
16.10 Script files location . 175
16.11 Editor short keys . 175

17 An introduction to Lua 177
17.1 Getting started . 177

17.1.1 Using functions . 178
17.1.2 Function with multiple results 179
17.1.3 Processing and manipulating strings 179
17.1.4 Data structures in Lua 181
17.1.5 Reuse code with Lua modules 183

17.2 The Lua language . 184
17.2.1 Lua is case-sensitive . 185
17.2.2 Whitespaces and line ends 185

v

INHALTSVERZEICHNIS

17.2.3 Comments . 185
17.2.4 Types and values . 186

17.2.4.1 Numbers . 186
17.2.4.2 Integer versus floating point 187
17.2.4.3 Hexadecimal constants 188
17.2.4.4 Floating point constants 188
17.2.4.5 Booleans . 188
17.2.4.6 Strings . 188
17.2.4.7 Escape sequences in strings 189
17.2.4.8 nil . 189

17.2.5 Tables . 189
17.2.5.1 Discontinuous tables with holes 190
17.2.5.2 Iterate through tables 191
17.2.5.3 Sorting tables 193

17.2.6 Identifiers . 194
17.2.7 Keywords . 194
17.2.8 Variables . 195

17.2.8.1 Assignment . 195
17.2.8.2 Global and local variables 195

17.2.9 Operators . 196
17.2.9.1 Arithmetic operators 196

17.2.10Bitwise operators . 196
17.2.10.1Conditional operators 196
17.2.10.2Logical operators 197
17.2.10.3String concatenation operator 197
17.2.10.4The length operator 197
17.2.10.5Precedence . 197

17.2.11Control structures . 198
17.2.11.1if then else . 198
17.2.11.2while . 198
17.2.11.3repeat . 198
17.2.11.4Numeric for . 199
17.2.11.5break . 199

17.2.12Functions . 199
17.2.12.1Function call . 199
17.2.12.2Function definition 199
17.2.12.3Recursive function calls 200

17.2.13Modules . 201
17.2.13.1Standard modules 201

17.3 Lua restrictions . 202
17.4 Lua References . 203

18 Lua analyzer extensions 205
18.1 Modules overview . 205
18.2 Common extensions for all Views 206

18.2.1 The base16 module . 206
18.2.1.1 base16.decode 207
18.2.1.2 base16.encode 207

18.2.2 The bit32 module . 207
18.2.3 The functions bpack and bunpack 208

vi

INHALTSVERZEICHNIS

18.2.4 string.pack and string.unpack 210
18.2.5 The checksum module 211

18.2.5.1 checksum.crc8_bacnet 211
18.2.5.2 checksum.crc16_bacnet 212
18.2.5.3 checksum.crc16_ccitt_kermit 213
18.2.5.4 checksum.crc16_df1 213
18.2.5.5 checksum.crc16_dnp3 213
18.2.5.6 checksum.lrc . 214
18.2.5.7 checksum.crc16_modbus 214

18.2.6 The config module . 215
18.2.7 The record module . 216

18.2.7.1 record.analyzer 216
18.2.7.2 record.buswiring 216
18.2.7.3 record.signalnames 217
18.2.7.4 record.starttime 217

18.2.8 The string dump extension 217
18.2.8.1 string.dump . 217

18.2.9 The transmission module 218
18.2.9.1 transmission.baudrate 218
18.2.9.2 transmission.bitpause 219
18.2.9.3 transmission.bytepause 219
18.2.9.4 transmission.databits 219
18.2.9.5 transmission.parity 220

18.3 Lua modules for individual views 220

19 Lua Protocol dialogs 221
19.1 How does it work? . 222
19.2 The dialog framework . 222
19.3 Add a template dialog . 223

19.3.1 Add widgets elements to your dialog 224
19.3.2 Apply the user settings 226
19.3.3 Passing data between dialog and script 228
19.3.4 Refresh or reload . 229
19.3.5 Defining element action handlers 230
19.3.6 Initialize dialog variables 231
19.3.7 Dialog settings . 232
19.3.8 Save dialog settings between sessions 233

19.4 More positioning and interaction 234
19.4.1 Advanced callbacks . 235

19.5 Update existing widgets . 236
19.6 Further examples . 236
19.7 Supported Dialog elements or widgets 237

19.7.1 Named parameters . 237
19.7.2 Common widget parameters 237
19.7.3 Button . 238
19.7.4 CheckBox . 239
19.7.5 Choice . 239
19.7.6 Label . 240
19.7.7 Line . 241
19.7.8 RadioBox . 241

vii

INHALTSVERZEICHNIS

19.7.9 Spacer . 242
19.7.10SpinCtrl . 242
19.7.11Table . 243
19.7.12TextCtrl . 244

19.8 Functions dealing with widget elements 245
19.8.1 Clear . 245
19.8.2 Enable . 247
19.8.3 GetPosition . 247
19.8.4 GetValue . 248
19.8.5 IsEnabled . 249
19.8.6 SetValue . 249
19.8.7 SetDialogSize . 249
19.8.8 SetTitle . 250

20 Lua modules 253
20.1 Writing a module . 254
20.2 Module path . 256

21 The Switch Editor 259
21.1 User Interface . 259
21.2 Switching signals and more . 260
21.3 Input modi . 261
21.4 Edit mode . 261

21.4.1 Insert a new decal . 261
21.4.2 Available switching elements 261
21.4.3 Select decals and connections 262
21.4.4 Deleting of decals and connections 263
21.4.5 Flip decals horizontally 263
21.4.6 Text input . 263
21.4.7 Limited resources . 263
21.4.8 Undo/Redo mechanism 264

21.5 Connection mode . 264
21.5.1 Connection rules . 264
21.5.2 Adding a connection . 264
21.5.3 Branches . 265
21.5.4 Move a connection . 265
21.5.5 Delete a connection . 265

21.6 Execution mode . 266
21.6.1 Switching errors . 266

21.7 Input and output elements at port A and B 266
21.8 Data input and recording . 267
21.9 Data logging . 268
21.10 Signal tapping . 268
21.11 Reset to default/factory settings 269
21.12 Load and save schematics . 269
21.13 Licensing . 269

21.13.1Buy a license . 270
21.14 The toolbar . 270
21.15 Short commands . 271

viii

INHALTSVERZEICHNIS

22 Synchronize two analyzers 273
22.1 Technical requirements . 273
22.2 Master Slave operation . 274
22.3 Establish a synchronous record 275
22.4 Analyse a synchronous record 276
22.5 Synchronize more than two analyzers 277
22.6 Conclusion . 277

22.6.1 Synchronous recording 278
22.6.2 Synchronous analysis 278

23 Commandline API 279
23.1 Combine the programs as a tool chain 280

23.1.1 Data source . 280
23.1.2 Manipulators . 280
23.1.3 Data sink . 280
23.1.4 Some examples . 280

23.2 Record data with msb_record 281
23.2.1 Connection settings and events 282
23.2.2 Usage in your own application 282
23.2.3 Remote control . 283
23.2.4 Synchronous recording with two or more analyzers . . . 283
23.2.5 Remote control a synchronous record 285
23.2.6 msb_record program parameters 286

23.2.6.1 Digital IO setup parameter 289
23.2.6.2 Transmission parameters 290

23.3 Formatted output with msb_format 290
23.3.1 Output of any character 291
23.3.2 File output . 292
23.3.3 Format parameters . 292
23.3.4 User defined date and time 294
23.3.5 msb_format program parameters 296

23.4 Filtering data output with msb_filter 296
23.4.1 Filter data . 297
23.4.2 Filter certain signal events 297
23.4.3 Filter a given record part 297
23.4.4 msb_filter program parameter 298

23.5 Split records with msb_split . 298
23.5.1 Split existing record files 299
23.5.2 Splitting the current recording from msb_record 300
23.5.3 Keep only a given number of records 300
23.5.4 msb_split Program Parameter 300

23.6 Trigger a record with msb_trigger 301
23.6.1 Edit a trigger script . 302
23.6.2 Define a trigger condition 302
23.6.3 Conditional start of a record with pre and post-trigger . . 303
23.6.4 Conditional output of an existing record file 304
23.6.5 Scan a record file for certain events 304
23.6.6 One script for scan and trigger 305
23.6.7 Multiple triggering . 306
23.6.8 Provided Lua modules 308

ix

INHALTSVERZEICHNIS

23.6.9 msb_trigger Program Parameter 308
23.7 One config file for all . 309

A ASCII character table 311

B Baudrate measuring 313

C Colors 315
C.1 RGB short form . 315
C.2 RGB long form . 315
C.3 Predefined color names . 315

C.3.1 Grey colors . 316
C.3.2 Basic colors . 316
C.3.3 Extended colors . 316

D Uninterruptable analysis with W232-Cable 319

E Windows Trouble-Shooting 321
E.1 Check analyzer connection . 321
E.2 Check analyzer bus connections 322
E.3 (Re)Install driver . 322

E.3.1 Remove driver . 322
E.3.2 Install driver . 323

E.4 Helpful program arguments . 324
E.4.1 Analyzer not found . 324
E.4.2 Firmware transfer error 325

E.5 Please help us with conflicting devices 325
E.6 Disable USB power management 325
E.7 Windows Device Manager . 326
E.8 Other problem(s) . 326

F Linux Trouble-Shooting 327
F.1 Check analyzer connection . 327
F.2 Check analyzer bus connections 328
F.3 Check your permission . 328
F.4 Install udev rule . 329
F.5 Remove Braille driver . 330
F.6 Helpful program arguments . 330

F.6.1 Analyzer not found . 331
F.6.2 Firmware transfer error 331

F.7 Please help us with conflicting devices 331
F.8 Check system log with dmesg 331
F.9 Other problem(s) . 332

x

1
Analysing of RS232 connections

There are a number of technical variants to examine RS232 data
transmissions. Which these are and how far they are appropriate
for your problem is the content of this chapter.

Still the use of a RS232 interface is the simplest possibility to connect two in-
struments or a PC and one instrument for communication.
The RS232 interface is the most common used interface in the measurement
and control technology. Even that -with introduction of the US-Bus- a much fas-
ter alternative is available -which additionally allows the simultanous connecti-
on of many instruments- the RS232 did not lose attraction. It is supported by
nearly all microcontrollers, is simply to implement, allows longer cable lengths
and is insusceptible to short circuit and distortions. Still many Router, Compu-
ter and instruments of telecommunication and consumer Electronics use the
RS232 interface as console access for updating their firmware.

While the RS232 interface was declared as obsolete with introduction of USB
today many providers of USB to RS232 converters are on the market whereas
the 100% compatibility between the USB converters and a real RS232 inter-
face is not always granted.

As long as the RS232 interface exists all typical problems as not matching bau-
drates, specification of parity data length and number of Stop bits furthermore
belong to the day-to-day business of serial RS232 connections. Beyond that
problems arise by defect or partially not working USB to RS232 converters, by
sudden communication breaks and other typical communication troubles. The-
se can only be removed by a detailed analysis of the connection.

For analysis of RS232 connection some methods exist:

1 Recording of the data via the serial driver of the PC

2 Use of a so called Y-Cable

3 Sampling of the lines by special hardware

1.1 Special serial driver
If one of the communication partners is a PC it is possible to log every sent and
received data byte after installation of a special driver. This method allows only

1

KAPITEL 1. ANALYSING OF RS232 CONNECTIONS

the logging of data which was processed by the serial driver of the operating
system.
By buffer overflows (the standard interface UART chip has just 16 bytes) lost
data is not recorded. buffer in the PC Uart. A precise time stamp for the dataPossible data losses

because of overflow of the
16 byte deep FIFO data.

is also impossible because the data reception is flaged via interrupt, but the
interrupt processing itsself takes place an undefined time frame later.
Therefore time data of ’sniffer’ programs, sometimes in the millisecond range,
have to be taken with care. They correspond to the time when the processing
of the input and output character took place and not to the time when the cha-
racter was physically present on the line.

1.2 Y-Cable
Here two variants exist. Either the send and receive line are connected via di-
ode to the receive line of a third connector. Or the send and receive line are
connected separately to a additional ports.

1.2.1 Y-Cable with combined TxD and RxD line
The first variant allows the logging of all transmitted data bytes (even of two
non PC instruments) with a PC and approriate software like Hyperterminal. The
disadvantage: Since both lines are connected you can not distinquish between
sent and received data. And when both instruments send at the same time no
logging is possible because both data bytes overlap and lead to mixed bits.

1.2.2 X-Cable with separate TxD and RxD lines
The send and receive line are separately monitored and logged. However this
variant requires two free serial ports of the analysing PC. Also special drivers
are needed because the separately received data bytes have to be synchroni-
zed by adding time stamps and unique numbers. The data direction is detected
but the time stamps are vague because of the above mentioned reasons. So it
is not possible to examine the time sequence of the incoming data. This kind
of logging was used under MS-DOS because this operating system allowed a
real time access to the serial ports.

1.3 Sampling
This method requires additional hardware which samples all signal lines simul-
tanously and processes it accordingly.
The advantage: Because the sampling and evaluation is carried out indepen-
dant of the connected instruments, conditions like false baudrates, false proto-
cols, invalid levels a.s.o can clearly be detected and logged.
Furthermore the sampling of the signal lines allows a precise time monitoring
of the data and control lines like RTS, CTS, DTR, DTS and so on. With this
even jittering and slightly differing baud rates are detectable.
Sampling analyzers combine the advantages of a protocol analyzer with the
features of a digital scope and offer the physical representation of the line le-
vels beside the logging of the data flow, precise in time.

2

2
MSB-RS232 Analyzer

The MSB-RS232 Analyzer is an essential tool for analysis and
optimizing of RS232 connections. As an autonomous device it
gathers exact information about every line change with micro
second precision, independent from the PC and its operating
system.
Equipped with a multitude of visualization tools it allows a
detailed view into every RS232 communication and detects
conditions which can be recorded by a true ’hardware solution’
only.

The Analyzer MSB-RS232 samples all eight signals simultaneously with a samp-
ling rate of maximum 16 MHz. Thereby all events, that means level changes on
the line, are stamped with the exact time in a micro second precise resolution.
This also applies for the level changes of the data lines RxD and TxD.
As events all changes of the line levels are regarded. That means a change

Max. 16MHz sampling
cares for clear details and
µsec precise time stamps

from 0 (space) to 1 (mark) and from an invalid to a valid level (and of course
vice versa).
The recorded data are transferred via USB to the PC at which a 500kByte ca-
che memory serves as a buffer to avoid data losses.
The analyzer features real time analyzing and simultaneous access/display of
different record parts even during an active recording. The maximum record
file size on PC is 4 GByte and unlimited (resp. limited by the free hard disk
space) when using the special command line API for long time recordings. The
record time depends only on the selected kind of events and data rate of the
connection.

2.1 Advantages of a hardware solution
The MSB-RS232 Analyzer offers the capabilities of a logic analyzer, combined
with a low price. With it the disadvantages of pure software solutions are avoi-
ded by the direct evaluation of the signal changes in an independent hardware.
Analyzing solutions, based on software, depend on the not constant reaction
and computing times of interrupts in the operating system. The usage of RS232
to USB converters add unpredictable delays of the USB subsystem. Further-
more the hardware input Fifos of the PCs are normally limited to 16 characters
and 115200 Baud. If the interrupt handling is too slow characters will get lost
because of the input buffer overflow.
The resulting time stamps are the times of the interrupt execution, not the real

3

KAPITEL 2. MSB-RS232 ANALYZER

time of the occurred events.
Especially if only one input is used to look into RxD and TxD (Y-cable) you can
not be sure to see the real sequence of the transferred data at RxD and TxD.
It also can be used only if data do not overlap since the two data inputs are
or-combined before routed to the PC input.
And even if you use two inputs of the PC (X-cable) you do not get any reliable
information about the time relationship between the channels and/or signals.
With typical USB to serial port converters it even gets worse since USB uses a
polling mechanism to fetch the data from the converters and the timing beco-
mes more or less useless.

The MSB-RS232 analyzer and pure software solutions in comparison:

Feature MSB-RS232 Software
solution

Detects invalid levels (tri-state) −
Any baud rate 1 Baud to 1 Mbaud −
Real time stamps −
Time resolution 1µs >10ms

Display of the real level changes RxD, TxD −
Automatic detection of baudrate and protocol −
Supports protocols with 9 Bit data word length −
Correct time relationships between data and
control lines

−

Detects baudrate jitter and wrong bit times −
Reroute and invert signals −
Switching and manipulation of lines conditional1

1 If the PC is active part of the connection and only for modem control lines.

2.2 Innovative software concept

For Windows...
XP, Vista, 8, 8.1, 10

...and all Linux
32 und 64 Bit

The software of the analyzer is designed as a Multi-Process Architecture map-
ping the OSI model and runs under all modern Microsoft Windows OS (XP,
Vista, Windows 8/8.1 and Windows 10) or Linux.
Already while recording any section of the data transfer can be investigated.
This includes the physical display of the signals in different time resolutions
(scope display) as well as the display of the transferred data bytes.

In addition, besides the pure sampling, the MSB-RS232 is capable to switch
single lines while recording (switch option). That is an ideal supplement to test
and stimulate RTS/CTS protocols or to break lines resp. set to a defined level.

So the physical signal of the TxD line can be followed and at the same time
an earlier part of the signal can be watched in a higher resolution. That is also

4

2.3. APPLICATION FIELDS

possible in all other analysis windows and allows the comparison of transferred
data at different moments.

Extensive search mechanisms allow the search for defined data sequences,
where also complex search requests are possible. That is done via regular ex-
pressions and could be:
All data strings which start with an ’A’ and end with ’Z’. Also a search for defined
levels or level changes can be done. The MSB-RS232 analyzer is supplied via
USB from the PC and is appropriate for mobile operation when using a Laptop
or notebook.

Application specific protocols and telegrams can be displayed with the help of
the integrated script language Lua. Already provided field-bus protocols are:

Individual protocols
programmable in Lua

3964(R)
BACnet
DF1
DNP3
Executive (Vending machines)
IEC60870-5-101
IEC60870-5-103
MDB/IPC
Modbus ASCII & RTU
MOVILINK
NMEA
P-Net
Profibus
SAE-J1587
SAE-J1922
SMA-NET
USS

More are in preparation and provided by free updates in future versions.

2.3 Application fields
The Analyzer MSB-RS232 is used for the analysis of data connections with
RS232 signals. Not only the pure data transfer but also the eight control li-
nes can be supervised. The high time resolution of one microsecond allows
the exact time analysis of the communication and detailed information about
the reaction times of RS232 products.
By the active sampling of all lines not connected lines (wires) or signals without
sufficient level can be detected. That could also be signals which are switched
down into a low power mode at the sender side. Hardware protocols can easily
be checked.
Typical application fields are:

5

KAPITEL 2. MSB-RS232 ANALYZER

Barcode reader

Cash systems

Card reader

Multimedia devices with RS232 support Interface

Control and measurement devices (Scope, Sensor,..)

Machine control systems

Embedded devices

All devices with a RS232 interface for support, test, and setup

6

3
Features & Benefits

The MSB-RS232 analyzer offers all necessary features for an
effective examination of EIA-232 connections. In particular for
debugging, recording, tests and ’reverse engineering’.

Simultaneous sampling of all lines by external hardware : Exact measure-
ment of all EIA-232 signals with a precision of 1µsec and a maximum sampling
rate of 16 MHz, independent form the PC operating system. No wrong time
stamps or event sequences due to delayed or not answered system interrupts
(software solutions).

Any baudrate with FLEXUART: High-precise set and measurement of standard
and non-standard baudrates in the range from 1 Baud up to 1 MBaud with a
resolution of 0.1% of value. Recording, analysis and own data injection with
any, even unusual baudrate. Detection of asynchronous or drifting baudrates
between sender and receiver.

Automatic protocol detection : Simple check and analysis of any communi-
cation with unknown connection parameters.

Supports 9 Bit Data words : Recording and analysing also of protocols with
9 Bit data word length.

Scope-like display of the data lines : Simultaneous display of the logical si-
gnals as well as the transferred data. That makes the error analysis and search
easy for transmission errors, i.e. improper bit rates (jitter) or wrong data for-
mats. Measuring of the real signals with the integrated bit ruler.

Protocol template : Define own rules how your data shall be displayed or
visualize any application specific protocols.

Data analysis in real time : Examination of the connection already while re-
cording the data.

Detection of invalid line levels : Recognition of open lines, stand-by conditi-
ons of the data drivers or short circuits.

Framing, Parity, Break Detection : Direct analysis of error conditions and the
reactions of end devices thereon.

Integrated schematic switch editor : Extends the analyzer by the capability
to interactively alter the signals. Lines can be switched or rerouted and data
can be injected in any line (inclusive simulation of framing and parity errors).
Also break conditions can be sent.

7

KAPITEL 3. FEATURES & BENEFITS

Pattern search with regular expressions : Makes the search for any data
sequences possible with wild card characters and time distances or pauses
between data strings.
Integrated LevelFinder : Finds any static level, level change or error condition.
Combined with the search of defined data bytes it is a precious tool to analyze
hardware protocols.
Integrated Lua script language : To define, visualize, compute (check sum
test) and convert the recorded data.
MultiView concept : Simultaneous analysis of the recorded data at different
positions with multiple tool windows. That’s a very powerful help to compare the
transferred data with their logical signal level or to compare different sections
of the data stream.
Copy And Paste : Simple copying of recorded protocol or data sequences into
other applications for further evaluation or documentation purposes.
Data export as CSV: For further evaluation of the logged data in Microsoft
Excel or other spread sheet programs. That makes the full toolset of these
programs available for statistic examination, sorting and other computations.
Direct display of the data stream by green Leds : Additional indication of
the data flow, quick check for a correct data connection.
Future-proof by modern FPGA technology : Integrated state of the art gate
array technology allows permanent advancements and adaption to different
applications. The updating is done simply at start of the software.
Logic mode : Every RS232 input can be switched to a logic input with a trig-
ger level of 1.3V at 5kOhm to sample logic signals which are not �RS232
compatible�.
Synchronize of two analysers with mikrosecond precision: The internal
Link jack provides the user with a time synchronious recording of two different
RS232/RS422/485 connections.
Internal memory of 512 kByte : USB transfer buffer of 512 kB for measure-
ment data to avoid data losses while recording at high baudrates.
Multi-Platform Support : The MSB-RS232 software is delivered as ’native bi-
nary’ for Microsoft Windows and Linux. No emulation, no additional libraries,
no installation of .NET®or Java®.
Multi-Language Support : German and English language support. The selec-
tion is done automatically according to the used operating system, but can be
changed manually.
Multi-Process Architectur : The splitting of different functions into different
programs or processes guarantees high data security while recording and pro-
vides a better adaption to the system resources and CPU load time.
Compact housing with USB connector : No additional power supply ne-
cessary. Mobile operation even with laptop.

8

4
Specifications

General
RS232 Protocol analyzer for recording and analysis of the RS232 lines TXD,
RXD, CTS, RTS, DTR, DSR, DCD, RI by parallel sampling with a maximum of
16 MHz. Precise measurement of all RS232 signals with a resolution of 1µs.
Decoding and input of serial data RxD and TxD with any baudrate in the range
from 1 Baud to 1 MBaud.
Automatic detection of baudrate and protocol.

RS232 Measurement
Any baudrate with FlexUart
High-precise setting and measuring of standard and non-standard baudrates
in the range from 1 Baud to 1MBaud with a resolution of 0.1% of the set resp.
measured value.

Data formats
Parameter for TxD, RxD: 5 to 9 data bits, parity off, even, odd, constant 0 or
constant 1.

Logical line state
Logical level 1 (V-), 0 (V+), invalid (-1.3V <In <+1.3V)

Time resolution
All lines are exactly sampled and marked with 1µs time stamps, independent
of the operating system of the PC.

RS232 connectors
Signal levels
Standard RS232 level ±3V to ±15 V, ESD protected inputs 5kOhm

Jacks
Standard D-Sub 9pin male female connectors.

Intern connections
All connections from A and B are connected via high speed drivers and can be
separately switched.

Logic mode
Ever RS232 input can be seen as a logic input with a trigger level of 1.3V,
5kOhm impedance.

9

KAPITEL 4. SPECIFICATIONS

Additional features
Cache
Internal cache memory of 512 kB for buffering of measuring data when recor-
ding data with high transfer rates.
Status LEDs
Leds for displaying of: red: recording status and buffer load, green: RxD and
TxD data flow.

Power supply
The analyzer is directly supplied from the USB cable. The consumption is about
200mA. USB Ground is the same as RS232 Ground.
No external power supply necessary.

Supported Operating Systems
Windows
Windows XP, Vista, Windows 7, Windows 8/8.1, Windows 10 (all 32 and 64 Bit)
Linux
All Linux with kernel from 2.4.18 and installed Gtk2 libraries (are standard). In
case of doubt you can test the Linux version from our download page. 32 and
64 Bit Systems.

Dimensions
Abmessungen
100mm x 50mm x 25mm (Length, width, height)
Weight
ca. 100g

Scope of delivery
Analyser
MSB-RS232 analyzer device.
Kabel
RS232 cable, 2m, 1:1, 9Pol DSub-Connectors male/female. USB cable.
Software
CD for Windows and Linux, Manual as online help and PDF document in Ger-
man and English.

Requirements
Graphical display
Graphics board and monitor with at least 1024x768 pixel resolution and 16 bit
color depth or more.
Disk space
200 MByte empty space for the software installation plus additional space for
the recording files.
Memory
256 Mbyte or more.

10

USB connector
One free USB 2.0 connector.

11

KAPITEL 4. SPECIFICATIONS

12

5
Program Installation

The MSB-Analyzer software is available for Microsoft Windows as
well as for Linux. Both versions are contained on the program CD
and are both offered to your system for installation. What you
have to regard is mentioned in the following chapter.

The MSB-Analyzer is connected via USB to the PC and communicates through
a virtual COM port. Under Microsoft Windows the respective VCOM driver is
installed automatically.
Linux distributions from kernel 2.4.18 already contain the right module, functio-
nal for the analyzer (ftdi_sio).
The software is bilingual (German and English) and can be installed even
without an analyzer, e.g. to evaluate earlier captured data. Or if you want to
check out the capabilities of the Analyzer by examining the enclosed sample
files.

5.1 Installation under Windows
Close all running applications before inserting the CD-ROM. Do not connect
the MSB-Analyzer before you insert the CD-ROM. Connect the analyzer after
the program installation is finished.

1 Insert the installation CD-ROM
The IFTOOLS product installer is invoked. When it does not automatically start
double click onto the My computer symbol on your desktop or open it from
the start menu. Double click onto the IFTOOLS-Setup-CD icon to start the IF-
TOOLS product installer.

2 Selecting the product
In the product list at the left side click on the relating analyzer (MSB-RS232 or
MSB-RS485). Start the software installation inclusive the necessary driver with
a single click onto
installation (Version 7.0.2). Probably it takes a moment until the in-
staller is displayed.

3 Install the software
Proceed according to the hints on the screen. The necessary driver is automa-
tically installed together with the operating program.

13

KAPITEL 5. PROGRAM INSTALLATION

5.2 Installation under Linux
Modern Linux distributions offer the same comfort for program installations as
Windows. Just as under Windows this behavior has to be activated before.
Your Linux system has to mount the CD as executable. If this is the case the
installation runs as under Windows.

1 Insert the installation CD-ROM
The IFTOOLS product installer is invoked. Depending on the distribution you
are asked if you want to activate the autorun feature. Answer with ’yes’. If the
installer does not automatically start read the following chapter ’Manual instal-
lation under Linux’.

2 Selecting the product
Click on the relating analyzer (MSB-RS232 or MSB-RS485) in the selection list
at the left side. Start the software installation with a click onto
Installation (Version 7.0.2).

3 Install the software
Proceed according to the hints on the screen. The necessary kernel module is
part of all kernel since kernel version 2.4.18 and does not have to be installed.

5.2.1 Manual installation under Linux
If the IFTOOLS product installer does not start after inserting of the CD please
follow these steps.

1 Open a console

2 Copy the installation file onto your desktop
Enter the following command:

cp PATH_TO_CDROM/programs/msb/msb-7.0.2-linux-installer.run ~/Desktop

3 Make the installation file executable
by setting the executable flag with:

chmod +x ~/Desktop/msb-7.0.2-linux-installer.run

4 Start the installation file
via mouse click (double click). Alternatively you can also run the installer in the
text mode in case of the graphical installer did not start:

~/Desktop/msb-7.0.2-linux-installer.run --mode text

Please note!
For the operation of the analyzer device you need a special udev rule. The
installer therefore will ask you for your user password to perform the udev rule
installation as sudoer during the installation process. (The normal graphical
installation procedure does the same). In the text mode it looks like:

14

5.2. INSTALLATION UNDER LINUX

It is mandatory to input ’Y’ otherwise a connected analyzer will not recognized
by the Linux system!

5 Install the udev rule manually
In case something went wrong with the udev rule, you can install the rule by
yourself. Since it is a write access to the /etc/udev/rules.d directory, you
need root rights (or become a sudoer).
For this execute the analyzer installer as described above but input ’n’ to skip
the udev installation. When the installer is finished, change directory to the new
analyzer software folder (usually it’s a folder msb-VERSION in your home direc-
tory.
In this directory execute the following command best as sudoer or alternatively
as root:

sudo ./udev-install.sh

You can always remove the rule by execute the uninstall script via:

sudo ./udev-remove.sh

But then again the analyzer is not recognized by your system anymore.

5.2.2 Installation for all users
A system wide installation is as easy as to install the software for a single user.
In this case just run the installer as a sudoer, for instance:

sudo ~/Desktop/msb-7.0.2-linux-installer.run

The installer will suggest you /opt/opt-VERSION as installation path when
it detects running with root/sudo permissions. Alternatively you can run the in-
staller in the text mode. This makes sense if the graphical installer did not start
or you only have access by a text terminal:

sudo ~/Desktop/msb-7.0.2-linux-installer.run --mode text

15

KAPITEL 5. PROGRAM INSTALLATION

5.3 Program Updates
IFTOOLS issues software updates in irregular intervals with new features and
improvements. These updates are free of charge can can be loaded from the
following address https://iftools.com/download
The update are complete program versions which also contain in the Windows
version the current driver. Updates can be installed in parallel to your current
MSB-Analyzer program version. Windows user only have to execute the update
(installer) file.
Under Linux it is necessary to make the file executable and then to start it like
described above.

16

https://iftools.com/download/index.en.php

6
Connection of the analyser

How do I connect the Analyser with my PC? How was it inserted
between the examined connection? What’s the meaning of the
red and green LED’s? These and other questions will be
explained in the current chapter.

The analyzer has two 9 pin D-Sub connectors which are used to include the
MSB into the examined connection. One is a male connector (Port B and one
is a female connector (Port A). An additional 1:1 RS232 cable is included in the
analyzer set. Via the Connector PC USB the analyzer is linked to the PC where
the analyzer software is installed. The power supply is done through the USB
cable so that no additional supply is necessary. The analyzer can also be used
in field with a laptop. The current consumption is about 250 mA.

The connector Link MSB will be used for snychronizing two MSB-RS232 analy-
sers with full time resolution.
All pins of the 9 pin male and female connectors are connected through high-
speed RS232 drivers and can be switched (switching option). Additionally all
lines are provided with high-speed 1MBaud RS232 receivers so that precise
signal recording is possible with 1µsec resolution.

6.1 RS232 connectors
The connector inputs and outputs are standard. The Ports A and B are connec-
ted 1:1 (if not rearranged by the switching option), only the names of the signals
are changed.

17

KAPITEL 6. CONNECTION OF THE ANALYSER

Pin Name Port A Port B

1 DCD output input

2 RxD output input

3 TxD input output

4 DTR input output

5 GND

6 DSR output input

7 RTS input output

8 CTS output input

9 RI output input

6.2 RS232 signal levels
The trigger level of the RS232 inputs are ±0.3V. Only levels outside -0.3V or
+0.3V are accepted as valid signals. Signals which stay longer than 30usecs
between these 2 levels are seen as invalid. Signals are invalid when no voltage
is applied (open or missing connection) or if the RS232 buffers of the transmit-
ting device are shut down.
This happens with current saving devices which shut down their drivers after a
certain time without data transfer. Because a reactivating of these drivers also
takes a certain time the first transmitted character can be sent incompletely
and erranously to the receiver.
These conditions can be exactly examined and measured with the MSB-RS232.

6.3 Control LEDs
The MSB-RS232 has 4 control Leds to display its operating status of the data
aquisition. They are located between the inputs A and B and are named Red
1, Red 2, Green 1 and Green 2.
The red LEDS are used to indicate the recording status and the buffer load of

Control LEDs
indicate wrong
connections and display
the record state

the analyzer while the green LEDs indicate the state of the connection.

6.3.1 Green Leds
If socket A is directly connected 1:1 to a PC the nearby LED Green 1 is on. The
same applies for Led Green 2 if the end device is connected 1:1 to socket B.
Both Leds indicate the rest level (0, negative voltage). While data is transferred
they flicker by the changes of the data levels. The more data per second is
transferred the more the Leds flicker. A good indication for the data stream.
With the help of these 2 Leds the correct connection of the MSB, the PC and
the end device can be checked:

1 LED beside the connector flashes:
Correct 1:1 connection: If the cables at both inputs are plugged in turn the
respective Led next to the input must go on.

2 LED in opposite of the connector flashes:
If the opposite Leds goes on two nul modem cables are used. The recording

18

6.4. UNINTERRUPTABLE ANALYSIS

of the MSB still works but the names RXD and TXD, DSR and DTR, CTS and
RTS have to be exchanged. Additionally DCD and RI are not connected. To
get no confusing data records this condition should be avoided by using other
cables or gander changers.

3 Both LED off:
Does no Led light the cables are faulty or the transmitters are shut down.

4 Always same LED is on:
Does always the same Led go on only one nul modem cable is used or a 1:1 for
the connection between 2 PCs. The result is a short-circuit between the data
lines. No data transfer takes place.

6.3.2 Red Leds
The red serve as the display of the MSB condition. the following conditions can
be displayed:

1 Boths LEDs are on:
The MSB-RS232 was not yet initialized by the PC and is not ready. The Inputs
A and B are not connected and all outputs are inactive.

2 Slow alternating blinking:
The MSB-RS232 was initialized but is still inactive, means: there was no record
started.

3 Red 1 is on, Red 2 is off:
Normal operation, the MSB is active in logging mode and recording all events
given in the setup.

4 Red 1 is on, Red 2 is blinking:
The internal data buffer is displayed. The fill levels 1

4 , 1
2 , 3

4 are shown by de-
creasing pauses between the blinks. The fuller the memory, the shorter the
pauses.

5 Both LEDs are blinking at the same time:
The buffer memory is full and some record data is lost. The duration of the data
loss is protocoled. To avoid losses the quantity of recorded data lines should be
limited. Also the recording of level transitions of TXD,RXD should be switched
off.

6.4 Uninterruptable analysis
By breaking the interface lines and feeding them through a gate array the MSB-
RS232 analyzer offers special features like the switch option (virtual breakout
box). But this also means that the connection is kept only as long as the analy-
zer remains in the connection and is supplied with power.

The optional available W232 cable provides a simple solution to plug and un-
plug the analyzer in a RS232 link without breaking the connection. For more
information about the W232 cable and it’s use see appendix D.

19

KAPITEL 6. CONNECTION OF THE ANALYSER

20

7
Program start

The control program is the cockpit of your analyzer. It is the
pivotal point to prepare and record bus transmissions. With it you
start a recording, save or load records or projects and open
different analysis tools to examine the transmission on several
OSI layers in real-time.
The Firmware of the MSB-RS232 ist not installed in the device but has to be
loaded after powering up. This takes place only once. As long as the device is
powered from the USB connection the firmware is kept active.

The first start
loads the firmware

into the device

Therefore the loader appears as soon as you double click onto the MSB-RS232
desktop icon.
The firmware loader automatically detects if an analyzer is connected and if
the firmware is already loaded or has to be transferred. After the MSB-RS232
was identified and the firmware was successfully transferred (observable at the
progress bar in the lower part of the dialog window) the MSB-RS232 control pro-
gram starts automatically.
If there are more than one analyzer connected with your PC the Loader will
show you a selection list of all detected devices.

If no MSB-RS232 was found, even though it is connected to your
PC, read the hints for Trouble shooting (Windows E, Linux F) in
the appendix.
If you simply forgot to connect the MSB-RS232 to your PC, just
connect it now and click on the ’Search’ button to update the list
of the detected analyzers. You also can work without the MSB-
RS232, e.g. to evaluate recorded data or to work through the
Tutorial. Because the program cannot detect the kind of ana-
lyzer - MSB-RS232 (PLUS) or MSB-RS485 (PLUS) - in offline
mode, you have to choose the wanted type from the selection
list.

The MSB-Analyzer software uses a multi process architecture.
That means, that the program does not run in a single window
but starts special tools according to the different tasks.
In view of this feature the start of a small control panel may
seem poor. But the software shall not confuse you with not ne-
cessary windows, multiline toolbars and nested menus.

21

KAPITEL 7. PROGRAM START

The analyzer control program is designed for an easy understandable operation
experience and offers you a set of easy to operate tools which are appropriate
for your application.

7.1 User Interface
The control program appears after the firmware transfer was completed. De-
pending on your last session or if you started the program by clicking a project
further program windows representing different views into the record will appe-
ar. But here we talk about the control program and it looks like this:

A Recording control: Easy start, pause or stop a recording.

B Settings: All necessary settings for the recording available with one
click. No long winded navigation through complex menu items.

C Control display: Clear display of the recorded data/events, settings, re-
cord time and record state. More information with a right mouse click.

D Analysis tools: Start the proper view with it’s last settings.

The control program is divided in four parts. On the left side are the record
controls A . They are inspired from an audio or video recorder and contains
of a record, pause and stop button. The meaning should be easy-to-read. On
click, and your record starts...
The button with the wrench symbol B gives you access to all necessary re-
cord settings, see 7.2. You have to set-up the analyzer according to the exami-
ned bus - but only once as long as you don’t have a change in your application.
The central part of the control program is the status display C . It gives you
all vital information about an active recording. A short description of the selec-
ted transmission type, the record time, metered bit rate and received data and
events and more. We explain it in detail in section 7.4.
The remaining right part D contains a launcher for all so called Views. These
are independent programs and every type gives you a special OSI level insight
into the active transmission or record, see section 7.5.

Remember! The analyzer software has a multi-process design. You can launch
as many Views to examine the transmission as you want. The control program
is completely independent from it and won’t be affect even if one of the View
crashed! This gives you maximum safety for your recording especially in case
when where wouldn’t be a second chance to fetch an error condition.

But let’s begin how to setup or configure a record.

22

7.2. CONFIGURE A RECORD

7.2 Configure a record

Record setup
Configurate a record

To stick with our picture of an audio recorder you must first select the input
source and adjust the record level. The same applies to the analyzer. Before
you press the record button you have to configure the device! The software
memorizes these settings so that you do not have to enter them any more.

The MSB-RS232 analyzer is designed to record and analyse all kind of RS232
transmission. Furthermore every RS232 input can be switched to a logic input
with a trigger level of 1.3V at 5kOhm to sample logic signals which are not
�RS232 compatible�.
But to do so you must first tell the analyzer what kind of bus you want to record,
how you have connected the bus with the analyzer device and which are the
transmission parameters (bit rate, data format,...).
The analyzer program leads you to all necessary steps. Just click the setup
button with the wrench symbol on the left side of the control display.

The appearing dialog is divided in different setting options arranged by the set-
up order importance from left to right.

1.Transmission 2.Signals 3.Record 4.Autosave 5.General

Mandatory for a record is the first option because this specifies what the ana-
lyzer samples (in our picture the input source) and how the data are evaluated
from the transmitted bit stream. The other four dialog tabs (Signals, Record,
Autosave and General) are preset with default values which covers almost all
applications in the beginning. You can left them unchanged in the beginning.

Some settings directly influence the logging. Therefore they are deactivated
while a logging session is running. The respective setup menus are then dis-
played in gray. The same is valid if you work offline (because without a connec-
ted analyzer device there is nothing to set).

7.2.1 Transmission setup
The settings in the first tab tell the analyzer all it has to know about the physical
transmission layer! In the OSI model these involves the physical and data link
layer.

Transmission setup
As mentioned before: The MSB-RS232 allows you to record almost all kind of
asynchronous field-bus transmissions. But to do so it is absolutely necessary
to set the correct parameters otherwise the analyzer cannot sample the accu-
rate data from the transmission signal!

Note! The analyzer is able to detect the parameters for you (see section asyn-
chronous protocol scan but you nevertheless have to apply it BEFORE you
start a record!
The reason: An automatical detection and setup during an active sampling in-
evitable leads to data losses caused by the fact that the hardware needs a

23

KAPITEL 7. PROGRAM START

certain period of time to determine and apply the right settings.

An asynchronous transmission is specified by the bit or baud rate and the da-
ta format. The latter includes the number of data bits, an optional parity and
the number of stop bits. You may have seen this specified e.g. as 38400 8N1
or 9600 7E2. As mentioned before: You can let the analyzer detect the right
settings or input it manually in this settings form. The necessary parameters
are:

1 Bit rate - or baud rate. Specifies the transmission speed of the bus.
Additional to the standard bit (baud) rates, the MSB-RS232 analyser supports
any rate in a wide range of 1 Baud to 1 MBaud.
To use an more special rate like 123456, just input it in the baudrate field. Or
select a standard baudrate by click on the button. Valid entries are 1 Baud
to 1 MBaud. By default, the display of the control program shows the measured
baudrate were alternatively the detected data at Port A or Port B are used for
the evaluation.

2 Data bits - the number of bits transmitted as one byte.
Besides the common data lengths the MSB-Analyzer also allows you the record
9 bit data transmissions, which are often used for address decoding or to mark
a telegram start.
Please note that a 9 bit data length excludes any other parity except for none.

3 Parity - indicates the number of set bits for error detection.
The parity setting does not influence the data evaluation, but you should use
the same parity setup (none, odd, even, mark or space) as used by the trans-
mission to avoid false parity errors.

4 Stop bits - automatically handled by the analyzer.
People often wonder why the analyzer doesn’t need the number of stop bits.

Stop bits
are handled automatically

The answer is: For the analyzer the number of stop bits does not matter.
Like the start bit is necessary to indicate the start of a frame with the transition
from idle to active the stop bit finishes the data frame with a safe return to idle.
So the stop bit is logical ’0’.
Only one stop bit is necessary for correct decoding, the following bit can be the
start bit of the next frame. To give the receiving decoder more time to transfer
the detected byte to its internal output buffer a further stop bit can be added
before the next start bit.
Generally every further stop bit extends the gap to the start of the next frame,
so these additional stop bits are simply idle conditions.
That means that a data receiver like the MSB-RS232 do not care about the
number of stop bits. One stop bit is sufficient to end the frame and to transport
the data to the internal analyzer buffer for further processing. All further idle
bits are ignored, waiting for the edge of the start bit of the next data frame.

Auto-detect the asynchronous parameters
Don’t worry if you don’t know the asynchronous protocol settings of your connec-
ted bus. The MSB-RS232 analyzer contains a so called FLEXUART core, an
specially developed decoder hardware, for the serial data transmission which
allows not only the measuring of the bit rate but also the detection of the used
data format. The only thing you have to do is to click the Autodetect button

24

7.2. CONFIGURE A RECORD

below the paramter controls to open the protocol scanner dialog.

A correct detection of the connection parameters implies an appropriate trans-
mission. For an exact result the scanner needs longer and especially different

Autodetect dialog
for asynchronous

transmissions parameters

data sequences. A transmission with always the same data (byte) leads to
wrong or inaccurate results. It is sufficient to receive data at Port A or Port B. A
recording does not have to be started.

Start the automatic detection with a click onto the ’Start’ button of the scan dia-
log. After starting the protocol detection the MSB-RS232 analyzer at first mea-
sures the bit rate of the data at Port A or Port B. In the further process the data
stream is analyzed and the correct number of data bits and parity is evaluated.
The complete process lasts only a few seconds and can be repeated at any
time by clicking the start button. As soon as the paramters are correctly detec-
ted you can adopt the found settings with the button ’Use scan’. Afterwards you
are lead back to the settings dialog.

Bit rate measurement
By default the display of the control program shows the measured bit rate of
both data channels A and B whereas alternatively the detected data at Port A
or Port B are used for the evaluation. The displayed bit rate is always a good
indication of any bus activity and works constantly without starting a record.
You can select a single data channel (detecting source) if you want to check a
certain direction (TxD or RxD). Or you disable the metering completely (some
synchronous bus systems does not use a constant bit rate).

Logic input
The inputs of the MSB-RS232 analyzer can be collectively used as logic inputs
to analyze serial or parallel connections without RS232 levels. This is com-
monly used in the embedded system field. Also level converter can easily be
connected without having to additionally convert to RS232.
In logic mode the internal RS232 inverting is omitted and the invalid level bet-
ween ±1.3V is suppressed.

7.2.2 Signals
You can select and rename each of the 8 sampled lines (signals) separately.
The latter one can be done even with a running recording.

Signal und Name
settings for the record

The program provides you with reasonable signal names as a result of the cho-
sen transmission type (transmission page) and optional the specified mode of
connection. Here two of the most common Signal name groups are already
preassigned. It is DTE or ’Data Terminal Equipment’ resp. DCE ’Data Commu-
nication Equipment’.

It is up to you which one you choose or if you define own names as ’User de-
fined’. In this case set the signal naming to ’User defined’ and enter the new
names for each signal.
The names Sig1 to Sig8 are used as place holder. Every name can consist of
a maximum of 7 characters, allowed are: all digits and letters, the underscore,
colon, and full stop. The modified signal names are automatically adopted by

25

KAPITEL 7. PROGRAM START

the control program and all analysis windows.

You can individually enable or disable the line events (signal alternations) to be
monitored by the Analyser by setting or removing the check mark beside the
relating signal. As default all RS232 signal levels and the decoded results of
the two UARTs are switched on.
Please check, that the selected signal names are shown. If you have chosen
’User defined’ but haven’t entered names then here appear - no names (blank)!

The decoding of data by the UARTs is done independently of the level change
recording. If you need the data only but not the tri-state signal alterations of
the transmission lines you can deactivate the recording of these RS232 signals
TxD (Pin2) and/or RxD (Pin3) because each level change is stored as an addi-
tional event and strikingly increases the quantity of the recorded data.
If you want to see the transmission signal of the data in the SignalView just let
these switches on.
Please keep in mind that the more unnecessary events you admit the more
(needless?) data is stored onto your hard disk.

7.2.3 Record mode
For troubleshooting of serial connections you often get the problem that you do
not know when the error occurs but you need a sufficient big quantity of data
to get a statement about potential reasons for the fault.

Choose a record mode
synchroneous, continous

or loop recording

Of course you can run the logging up to the occurence of the fault. But this can
cause a rapidly increasing amount of data. With 115200 Baud and recording of
all level changes this can mean 2MBytes data per second!
Therefore the analyzer supports 2 modes of logging:

1 Continuous recording:
In the continous mode all occuring events are stored until the recording is stop-
ped. This mode is appropriate if you want to watch and analyze the data stream
already while recording.

2 Time loop with Fifo mode:
In the Fifo Mode a certain amount of data of the last (before stop of recording)
occured events is stored. The amount can be defined by setting the maximum
size of the recorded events (1000...1000000 events) or by setting a time limit
(10...600 seconds).
This behaviour quasi correspondends to an analogue endless tape (used with
observation cameras). With this tape always the last time, defined by the tape
length, is recorded. In this case you can define the ’tape length’ in a given
range.

26

7.2. CONFIGURE A RECORD

Please note that in the Fifo mode no analysis tool can be used while recording.
The reason is that the tools need a random access to the recorded data which
is not possible in the Fifo mode. In this mode data is always overwritten from
the beginning of the buffers. As the Fifo mode is normally used for recording
with later analysis this behaviour is not necessarily a disadvantage.
As soon as you stop the recording all recorded data are normalized. That
means that they are sorted according to their time stamps and can then be
analyzed as usual.

Time synchron recording
In the program defaults each MSB-Analyzer works autonomously unless it recei-
ved so called synchron impules on its MSB-Link jack from a connected ’Master’.
If you like to record two independent connections at the same time, for instance
a RS232 and RS485 port of a level converter, you have to choose one of the
analysers as the record ’Master’.
You can see the current analyser status in the display. A ’Master’ above the
running record time indicates that the device works as the master, a ’Slave’
means that the analyser is linked as the slave. In the latter case all settings are
disabled since there is only one Master allowed. We describe this feature in
detail in section 22.
You can use the ’Flash connected analyser’ if you are in doubt which one you
are currently setting.

Adapt the record date and time
Sometimes you want to adjust the date and start time of an analysing record
perhaps if you examinate the record in another time zone or need to adapt it to
the date and time of a second comparing record.
To do so, just click the ’Adapt now’ button and enter the new date and start
time.
Close the dialog with ’Ok’. The Views automatically refresh their display.
You can always switch back to the original record date in the same dialog. The
new date/time doesn’t change the original record. The software only uses the
new value as an offset added to the initial record time and date.

Save new record date

The modification of the record date and time doesn’t alter the record file.
The new date/time is only temporary for the current session. If you want
to store the modifications permanently you have to save the record.

27

KAPITEL 7. PROGRAM START

7.2.4 Autosave
The amount of data can rapidly increase during a record. Therefore the pro-
gram only stores the data if the user explicitly want to save it in a file.

Save a record
automatically after

each stop

But there are conditions which require the storage of the record. For instance:
If you like to make sequent records for a later analysis or if an analyser in slave
mode isn’t accessable.
For both cases you can preset an automatical storage of the record. The sto-
rage always takes place:

1 After stop of a synchronous record
2 After each stop of a record

The place and folder of the saved files are freely selectable. The program crea-
tes a unique file name according to the serial number and the record start date-
time which prevents to overwrite existing files. But you can add an additional
prefix for a better identification or classification.

7.2.5 General
This page is intended for general settings. Here you can enable the security

Common settings
like warnings, taskbar

behaviour and external
views synchronisation

question for not yet stored data (default is on) and also save the current session
as the default session so it will restored during the next program start (default
is on too).

As a special feature the software offers you to synchronize the Views of two
running MSB-Analyzer programs with each other. This comes in handy if you like
to compare and analyse two synchronous records. All views of boths records
interact as it used to be in a single recording.
For this case you have to allow the external synchronisation first.

7.3 Start a record

Record Pause Stop
Recording control

As soon as you have specified the communication parameters one click onto
the record key starts the recording . The record key begins to glow red (see
margin picture) and the active symbol in the display starts to turn.
You can halt the recording at any time by clicking on the Pause button. The
recording of occuring events is discontinued until you continue the recording by
another click on the Pause button.
If you want to end the recording press the Stop button. The recording is not
deleted but finally stopped. If you want to start a new recording the program
reminds you to first save the recorded data of the last session.
The MSB-RS232 analyzer software allows to examine the data even while re-
cording. In this respect you will stop the recording not before you want to start
a different one or to save it for a later examination.
All further tools to display the transferred data or their physical level can be
optionally opened or closed without influencing the recording.

Test the software without analyser

You can test the program even without a connected analyzer. Simply
load a sample recording with Ctrl+O from the example folder in the in-
stallation directory.

28

7.4. STATUS DISPLAY

7.4 Status display

The central part of the control program is the display of the current recording.
To indicate all information clearly arranged the display can be operated in three
different modes. The selection is simply made by a right mouse click onto the
display.

Toggle the display
with a right mouse click

In addition to the connection data also the available recording capacity is dis-
played. The necessary disc capacity is depending on the data traffic and the
events, selected for recording. An estimation of the space consumption shows
the marker (dot) on the horizontal dividing rule. It indicates the empty space
(right hand of the marker) in relation to the total available space.
The default directory is the usual Windows or Linux temporary directory. You
can change it by calling the program call with an addition parameter (see also
section 7.15 Additional program arguments).
The speed of the moving marker is depending on the quantity of the occuring
(and selected) events as well as on the size of the empty space in the used
temporary directory.

7.4.1 Display I

This is the default display when you start the program. It informs you about the
elapsed record time, the set transmission type and transmission parameters
(here Asynchron, bit rate, data format). And by comparison the metered baud
or bit rate with deviation in percent to the set value (Mete:).
The part below the line of the record space indicator shows the activated input
channels resp. signals you have activated for the recording.
The number of received data bytes (depending on the direction, bus or bus
segment) are shown on the right side (Data A and B).

r rrrrrrr� �
� �r01:31:47 Asynchron: 8N1 115200

Mete: 117716 +2.1%
Data A: 3427879
Data B: 564711

DCD TxD RxD DSR DTR CTS RTS RI

Recording
activity icon

Received Data
at CH1/CH2

Monitored
signals

Record time Transmission type/setup and metered bit rate

Free record space indicator

7.4.2 Display II

The second display informs you about the total sum of transmitted data bytes
and about the quantity of the remaining events. These are in general all signal
alternations including the signals generated by the analyzer itself like bus di-
rection, frame valid signal a.s.o.
Note! In this display mode the time indication is related to the last occurred
event and not the running recording time. So the time remains zero until the
first event happens and only changes with a new occurring event, either a data
byte or a signal alteration.

29

KAPITEL 7. PROGRAM START

r rrrrrrr� �
� �r01:28:09 Asynchron: 8N1 115200

Mete: 117716 +2.1%
Data: 15956
Events: 873585

DCD TxD RxD DSR DTR CTS RTS RI

Recording
activity icon

Recorded Data

Signal level alterations

Time of last recorded event (record duration)

7.4.3 Display III
The third display alternative serves as a control display for the connection of
the Analyser to the controlling PC.
The analyzer MSB-RS232 is controlled and supplied directly through the USB
connection and uses a direct USB link for the full 480 MBit transfer rate.

r rrrrrrr� �
� �r01:31:47 MSB05002

Link: USB
Gaps: 0
Fifo: 0

DCD —– —– DSR DTR CTS RTS RI

Recording
activity icon

State of the MSB to
PC data connection

PC connection information

The fields Gaps and Fifo indicated if the analyser has recorded or sent more
data than the PC could handle (as a result of a too slow connection). Normally
both values should be zero. Other values indicate that either the internal buffer
of the analyser (Gaps) resp. the internal buffer of the device driver could not
handle the data rate (overflow, lost data). In this case you should reduce the
number of recorded events.
All signal and and data lines can be individually enabled and disabled for log-
ging. Inactive are shown as lines.
In the examples above the level changes of the transmission lines RxD and
TxD are not logged.

7.5 The analysis tools
The control program solely makes the collected data available. The actual dis-
play and analysis of the data is done by analysis tools - separate program
modules to visualize the data at different time points and in different display
modes.
You can open any number of analysis windows by either using the below men-
tioned short commands or by clicking on one of the quick start buttons at the
right side of the display.

30

7.6. SAVE A RECORDING

A (P.47) Virtual Ledtester: Das virtual counterpart of a real ledtester.

B (P.49) Data View: Data dump of the transmitted data with special
search features.

C (P.73) Event View: All line changes in a clear look, search for line
modifications.

D (P.85) Protocol View: Display any protocol with your own definition.

E (P.155) Signal View: Digital Scope like view of all lines.

F (P.259) Switch Editor: A virtual breakout box: Switch, reroute, invert
lines, inject data also in active connections.

7.6 Save a recording
Independend of the status of the recording (aktiv, paused or stoped) you can
save the data, collected so far, in a file.
Press the keys Ctrl+S or select in the file menu the entry Save→Save recor-
ding. In the opening dialog you can enter a new file name (The extention .ms-
blog is automaically added) or you can overwrite an already existing recording.
This file contains all information about the selected and recorded events and
data bytes. Settings of the control program and opened analysis windows are
separately stored as a project file.

Every time you save a recording the choosen file is stored in the list of last
opened recording files and can be loaded at any time. More information can be
found in chapter ’Last opened Recordings and Projects’.

Save a special section

To save any section of the recorded data use the event monitor and
mark the interesting range. To save the tranmitted data bytes only or a
part of it use the data monitor and mark the interesting range.

7.7 Save a session as a project
A session contains the current state of the opened analyser program. This
includes all current settings and views which represent the program on the
screen. That means that beside the connection parameters also position, size
and content of all opened analysis tools and all the marked regions are combi-
ned into the session.
You can save the session at any time by pressing: Ctrl+Shift+S or by selecting
Save→Save project in the file menu.
When a session is saved also the data, recorded until this time, are saved in a
separate file with the same project name, but with a different extention.

31

KAPITEL 7. PROGRAM START

Separate files for project and record

Project files always have the extention *.msbprj, the recorded data files
the extention *.msblog.

Accordingly a record data file is also loaded (if available) when the project file
is opened.
With it you have all informations you need to resume an analysis of recorded
data at exactly that point where you paused or finished the examination before.
Saved projects are also managed in the list of last opened project files, see
’Last opened Recordings and Projects’.
Each session can saved as a independent project template.
For this purpose clear all recorded data by New→New record in the file menu
or press Ctrl+N. Afterwards save the session under a name of your choice.

7.8 Open an earlier recording
A devision between project files and record files was intentionally made. The
reason is that you can load an earlier data recording into your current project
without loosing your current settings.
Press Ctrl+O or click on Open→Open Record in the file menu to load the data
into your current session. Please note that this can be done only if no recording
is running and that your recorded data are overwritten.

7.9 Open an earlier session (project)
Press Ctrl+Shift+O or click on Open→Open project in the file menu to open a
saved session.
The control program loads the associated recording, places the analysis tools
and makes the corresponding settings. In short it restores the program state as
it was at the moment of saving the session.

7.10 Last opened recordings and projects
As mentioned earlier all saved recordings and sessions (Projects) are listed in
two separate lists. You get quick access to the files you used last.
The lists contain the names in sequential order so that the newest files are on
top. All files are listed with full path to clearly identify them.

Click on ’Last opened Recordings’ in the file
menu and select the appropriate one. This is
the same like open a recording with the open
dialog but is much faster because you do not
have to move through the different menus and
directory trees.
If the choosen file is no more available, i.e. be-
cause you deleted it, you are asked by the pro-
gram if the file shall be removed from the list.
If the file really does no longer exist you can

answer with ’yes’. But if the file is on a data medium that is only temporarily
unavailable you can answer with ’no’ and the entry is kept.

32

7.11. DRAG AND DROP

7.11 Drag and drop
You can load any record or project file by simply drag and drop it into the ap-
plication. Just drag the wanted file from your file browser or desktop into the
control program.
This will replace the current session with the data of the new dragged file. In
case of a project file also all stored session settings are restored including all
Views.
Please note that drag and drop isn’t possible during an active recording.

7.12 Connecting multiple analysers
You can use multiple analyzer at one PC at the same. Furthermore it is possible
to compare the data and events of one analyzer to the data of another one or
to data recorded earlier. Every control program acts independent to the others.
To explicitly connect the control program to a certain MSB-RS232 you have to
start the program with declaration of the serial number of the MSB-RS232. The
serial number is attached to the bottom of the instrument and is displayed
in each window frame of the running program. It has the following format:
MSB#####.
If you do not add the serial number the program connects to the first instrument
it finds on the USB. This is the default behaviour.
Depending on the PC and the sequence of search the analyzer found in each
case may vary.
To select a certain analyzer by double click on the start icon proceed as follows:

1 Right click onto the MSB-RS232 Icon and select the entry Copy.
2 Right click onto an empty space of your desktop and select Insert to add a copy

of the start icon.
3 Rename the Copy to e.g. MSB##### (##### is the serial number).
4 Right click on the renamed icon and select the entry Properties.
5 Add in the field Target: to the call of the control program the parameter -nMSB#####.

I.e. something like this:
C:\Program Files (x86)\msb-7.0.2\msb_serv.exe -nMSB#####
resp. for Linux:
~/msb-7.0.2/msb_serv -nMSB#####

6 Click on OK to apply the addition.

Take care that the added serial number of your analyzer is the same as the
one on the instrument. Otherwise the analyzer will not be found and an error
message will be issued.
Following this procedure you can define an own start icon for each analyzer.

7.13 Automatical start after computer boot
The analyzer can be started automatically and set into the logging mode af-
ter booting of the computer. An additional parameter ensures that the analyzer
switches into the record mode immediately after the firmware transfer was com-
pleted. At the same time this parameter takes care, that the logging stops and
the resulting record file is correctly closed when the system is shut down.
That means in detail:

33

KAPITEL 7. PROGRAM START

1 As soon as the boot process is finished an analyzer is searched and loaded
with the firmware.

2 Subsequently the analyzer is set to the recording state and starts logging the
connection. For this application the last connection settings are used.

3 Every new recording is stored in an own logging file. Its name is combined from
the serial number of the analyzer and the start date and time of the recording.
For example: MSB00237-20120702093107.msblog means a record taken
on 2th July 2012 at 09:31:07.

4 The analyzer software closes the record file as soon as the computer is shut
down.

Please note, that the last events of the recording are possibly not stored when
the computer is incorrectly switched off (power off without shut down com-
mand).

Autostart with high data increase

The time to store the data depends on the amount of data and can take
several minutes with very large volumens of data.
An alternative would be to use the command line tools from chapter 23
and put an according script or batch file in the autostart folder.

7.13.1 Activate the autostart feature under Windows
Windows automatically starts all programs after login which are located in the
Startup folder of the logged-in user (since Windows 7). That is also valid for the
MSB-Analyzer software.

1 Press the keys + R and input the following command: shell:startup
This opens the Startup folder in the file explorer.

2 Copy and paste the analyser desktop icon into the Startup folder.
3 Right click the COPIED icon un the startup folder and select �Properties�.
4 Add to the target entry the autostart parameter -a, i.e.:

C:\Program Files (x86)\msb-7.0.2\msb_serv.exe -a

Click on Apply and OK to save the change. When the computer is rebootet the
analyzer program is executed and a new recording is performed.

7.13.2 Activate the autostart feature under Linux
The Linux approach is similar to windows but there are two autostart (startup)
folders to consider. The system wide folder is located under:

/etc/xdg/autostart

but you need root rights or must use sudo for write permissions. We recom-
mend to use the user depending autostart folder. Especially if you installed
the software as a normal user. The location (and also the mechanism) might
depend on the desktop environment. But for most desktops the folder path is:

~/.config/autostart

34

7.15. ADDITIONAL PROGRAM ARGUMENTS

Just open the autostart folder with your file browser and copy and paste the
analyzer desktop start icon into this folder.
Afterwards right-click the start icon (in the autostart folder!) and select �Properties�.
In the command field add the analyzer autostart parameter -a as described in
the autostart Windows section above. The command field should look like:

~/msb-7.0.2/msb_serv -a

Close the property settings dialog and login again to check if the analyzer soft-
ware starts automatically. You don’t have to rebbot your system!

7.14 Short commands

Short commands
of the most important
functions

Action Short command

Online help for the control program F1

New recording Ctrl + N

New project Ctrl + Shift + N

Open recording Ctrl + O

Open procekt Ctrl + Shift + O

Save recording as... Ctrl + S

Save project as... Ctrl + Shift + S

Start recording R

Pause recording P

Stop recording S

Open a virtual Ledtester Ctrl + Alt + L

Open a Data View Ctrl + Alt + D

Open a Event View Ctrl + Alt + E

Open a Protocl View Ctrl + Alt + P

Open a Signal View Ctrl + Alt + S

Open the bookmarks (regions) Ctrl + Alt + R

Save settings and close program Alt + F4

7.15 Additional program arguments
The MSB control program can be called with a series of additional parameters
to set explicite defaults like language, offline mode or the typ of the connected
analyser.
In most cases the default setting (automatical search an initializing of the ana-
lyzer) is sufficient. If the analyzer is not found (this can happen if Bluetooth
converters are used because they reserve some COM ports) or if you want to

35

KAPITEL 7. PROGRAM START

set another directory for storing your temporary logging data you can change
this with the following program parameter.
You can add additional program arguments to your desktop start icon like des-
cribed in chapter 7.12.

Parameter Description

-a Starts the analyzer in autostart mode. That means that after
loading the firmware into the connected analyzer the device
is immediately switched into logging mode and all recording
files have serial numbered names.

-D directory Set the working directory.

-e Starts the control program with the default settings. All sto-
red program and session settings will be ignored.

-f firmware Load an alternative firmware (firmware file).
USE WITH CAUTION! An invalid firmware may damage the
device!

-i Forces the loading of the firmware even when the MSB-
RS232 is already loaded.

-j Forces the program windows to appear on the current
screen. Use this parameter, if you want to open a project
file, which was saved on a workstation with more than one
monitor. (And therefor the windows doesn’t appear, because
they are saved on a non visible screen).

-l language Select the language. Values for language are:
0: System default, depending on your operating system, 1:
english, 2: german
Syntax: msb_serv -l1

-n serno Select a analyzer by it’s serial number serno. Important, if
you are connecting more than one analyzer at the same
time.
Syntax: msb_serv -n MSB12345

-o type Starts the control program offline using the given analyzer
type (and suppress the selection dialog). A connected ana-
lyser is not searched for. Recordings are not possible but
saved data can be examined. Syntax: msb_serv -o typ
Valid types are:

MSB-RS232
MSB-RS232-PLUS
MSB-RS485
MSB-RS485-PLUS

For instance: msb_serv -o MSB-RS232

36

7.15. ADDITIONAL PROGRAM ARGUMENTS

-r number Reduces the firmware transfer speed by the given number.
Default is 0 (full speed), maximum value 100.

-T directory Presetting of the directory where the temporary logging data
is stored. By default this is for Windows:
C:\Users\USERNAME\AppData\Local\Temp\

and for Linux /tmp/

--verbose Stores a report file (AnalyzerScan.txt) about the analyzer
detection process on the desktop. Send this file to
support@iftools.com when the software fails to recognize
the device correctly.

37

mailto:support@iftools.com?subject=Analyzer detection

KAPITEL 7. PROGRAM START

7.16 Special program parameters
Beside the ’normal’ program arguments the control program also offers a few
parameters to affect the program in some special cases.
The relating parameters are listed below and are not stored after the program
end. That is you have to give it to the program each time you start it again.

Parameter Description

--exit-without-saving Close the program without any warning about unsa-
ved data or settings.

--fifo-size Specifies the size of the data fifo between the analy-
zer and the program. The default size is 10MB. You
can increase the size when recording a bus with
very high bit rates and data load. Please note that
the maximum fifo size depends on the free system
memory. The following example set the fifo size to
700MB:
msb_serv --fifo-size=700000000

--ignore-unsaved-data Disables the warning about recorded but not saved
data. This may useful if you running some tests wi-
thout a need to store the data always afterwards.

--max-used-memory=size Tells the program to use a smaller size of shared
memory. Default is 4 GByte. For example:
msb_serv --max-used-memory=1000000000

--socket=portnumber Specifies another socket port for the communicati-
on with the SwitchEditor. The default ports are in
the range 50000...50100, but sometimes other ap-
plications have already reserved these. A validate
port number starts with 1024, the max. number is
65535.
A zero port number disables the socket completely,
the use of the SwitchOption isn’t possible then.

38

8
The MultiView design

Already while recording the data can be displayed at different
points in time in different formats with different time resolution.
We call this concept MultiView, the actors Views or Analysis Tools.

The MSB-RS232 analyzer software uses a multi-process architecture to gua-
rantee a high maximum in stability and scalability. The Recording of data from
the via USB connected analyzer and their display and evaluation are done by
separated and independent programs and processes which communicate with
each other. That has a lot of advantages:

A recording can be examined at the same time at different segments of the
data stream and in different representations with different analysis tools.
Visualization in real time already while recording.
The number of views only depends on the computing and system power (sca-
lability).
Application errors in the displaying programs do not have effect on the recor-
ding.

By the capability of the single programs (Views) to communicate with each other
a number of new possibilities to make the analysis of EIA-232 connections ea-
sy are opened.
So different views of the recorded data can be linked. What does that mean?
Every display program can be selected as master. All other data views automa-
tically follow this master view and synchronize their displays to it. For instance:
The graph of the physical data signal (scope view) follows the cursor of the
data monitor and vice versa.
The search for a defined level change or a specific data delay fades in the
respective data sequence. A click onto the recorded parity error shows the re-
spective signal, a.s.o

8.1 Synchronization
This way of communicating is called synchronization, the handling is identical
for all Views.
Each display program may alternately follow the current recording and display
the last occurred events (data byte or level change). Or it can lock the current
view to compare it with another sector or recording.

39

KAPITEL 8. THE MULTIVIEW DESIGN

If the display program is switched to interlocked operation it reacts on all syn-
chronizing requests which are triggered from other Views and fades in the the
respective section of the recorded data in its own display mode. Thereby the
program, which is just operated by the user, is automatically seen as the mas-
ter.
With this simple concept any views can be synchronized, completely indepen-
dent of the running recording.

Synchronize displays
individual for each View

Symbol Action Description

Follow
(autoscroll)

The display follows the recording and always fades
in the last recorded data.

Locked If locked the content of the View is frozen, e.g. to
compare it with other views from other parts of the
recording.

Linked If linked the View is synchronized with the content of
the master View.

8.1.1 Follow (autoscroll)
If your interest is in the last events of the examined data connection, for instan-
ce if you like to see the current data flow or switch signal levels manually and
you want to directly check it on the lines you have to activate the Follow button
in the tool bar.
The analysis window is switched to the autoscroll mode and shifted its window
content always so that the last event is visible.
Please note that in this autoscroll mode no synchronization with other analysis
windows is performed. An active autoscroll is limited to the respective window
and has no effect on other analysis windows.

8.1.2 Locked (fixed)
In case the opened windows shall represent different data sections a synchro-
nizing or following of the display is not wanted. You just want to intendedly
watch the different data sections. An update by synchronization would delete
the window content. Therefore set the display mode to locked.

8.1.3 Linked
As soon as you activate this button the content of the window follows the cursor
movements of the active input window. That means it synchronizes with the
analysis window which currently has the input focus and is operated by you
(master window).
If more than one analysis window is opened at the same time automatically the
window which has the input focus is the master. All cursor movements or shifts
are also transferred to all those windows, which are set to the linked mode.

8.2 Views (displays)
Views are autonomous programs which link into a current running recording and
visualize data in a certain format. The MSB-RS232 analyzer software follows the
concept to offer a specially optimized display tool for each kind of examination.

40

8.2. VIEWS (DISPLAYS)

Each view provides functions which represents its kind of data interpretation.
Thereby the handling stays easy and clear, multiline toolbars and overload me-
nus are avoided.
You are searching in a data View for data sequences, while you watch out for
level changes in the event monitor? Each View provides just the search dialog
you would assume to find there.
Simply close data views which you do not need or do not open them. Since
they all are independent programs you can place them on your desktop as you
like and vary their size and position.
The session management saves all settings. Views are automatically shown
with their last adjustments and can be copied with a single click.
The following Views are available:

8.2.1 Virtual Ledtester
The current line level displaying LED tester is a standard tool for checking
RS232 communications. The virtual LED tester shows the level of all RS232
lines with stylized red and green LEDS and gives a first impression of line con-
ditions.

8.2.2 DataView - Data Monitor
The data monitor represents the transferred data as a series of data bytes in
different formats (ASCII, decimal or hexadecimal). As a special feature the data
monitor allows the search for defined pattern by the use of regular expressions,
which exceeds the normal search for words or sequences by far. In addition you
can search for pauses between sent and received data and in general between
any data.
With the help of the integrated script language the displayed data can be com-
puted and colored in any way. Protocols can be visualized, checksums tested
in real time and data transformed into other forms.

8.2.3 EventView - Event Monitor
Every line change is an event and is logged. Be it the change of a control line
or the change of a single bit of a transferred data byte. The event monitor lists
them all and allows a simple navigating between all or certain event types, the
measuring of times between events and the search for defined conditions or
condition changes. For instance the change of RTS from a logical 1 to 0 while
at the same time the RI level is invalid.

8.2.4 ProtocolView - Protocol Monitor
The protocol view enables you to display the recorded data according to special
rules.
Define your own protocol so that every data sequence is displayed in an own
line. Also color any section of the sequence to make them more readable.

8.2.5 SignalView - Signal Monitor
The MSB-RS232 analyzer samples the logical state of all signals with a maxi-
mum of 16 Mhz. The result can be watched in the signal monitor. Analogous to
a digital scope you can move to any section and examine in different resoluti-
ons.

41

KAPITEL 8. THE MULTIVIEW DESIGN

By synchronizing to other views you immediately see the basic signal behavior
of every data byte and therewith the real world of your EIA-232 connection.

8.2.6 Regions
Regions are definable sections of the recording. They can be compared with
bookmarks and define time ranges in the recording file. Regions can be named,
they also can send out synchronization requests to other views.
A click onto the start or end of the region is sufficient to let them be faded in into
other windows. In this way it is easy to compare recorded sectors in different
representations.

8.3 Copy Views

Copy View
to compare its content

with another sector

The Clone symbol in the toolbar starts an exact copy of the current analysis
window with all its features, settings and position within the recorded data.
By this you can fix a current view while you go on working with the copy (or the
original). This makes sense when you want to compare various data regions.

8.4 Default settings for Views

Save settings
for this view type

Position, size and individual settings of every open view are stored by default in
the default project file1 when the application is closed (the user quits the control
program).
Every view launched by the control program starts with its own individual setup
which may be different from the reopened views after program start.

You can specify the standard setup (how a certain view appears) by ’pin’ the
current settings of every view with clicking the pushpin icon in its toolbar. For
instance:
You want to start the SignalView always with the dark theme (black signal back-
ground) and only 4 signal channels. Let’s say only RxD, TxD, RTS and CTS or
CH1...CH4 when running a MSB-RS485 (PLUS).

Just configure the SignalView according your wishes and click the pushpin in
the toolbar. The control program shows a short message confirming the new
setup. If you start a new SignalView afterwards, it uses the new setup. This
setup is also stored as the default session when you close the application and
available again in your next session.

1Project files contain a complete description of the current session. They are the subject of the
following chapter.

42

9
Session management

A program session contains a variety of opened windows in
different views. The session management cares that at program
start you will find everything again like you left when closing the
program.
The session management takes care for the correct storing of all relevant set-
tings for a session. All recording parameters, window properties (position, size)
and content (colors, text size, formats) of the open Views are saved as default
configuration when ending the session by closing the analyzer control program.
The session is automatically restored at next start.
The storage of the current program settings are completely transparent. You do
not have to trigger this process, but you also can save the complete session
including the recorded data as a project. In this case you can proceed with the
examination of the data at a later time simply by opening the project file.

9.1 Projects
Projects are used for saving of your current work (analysis) with the MSB-RS232
software, that means the recorded data is also stored. Therefore a project al-
ways consists of two files:

1 Project file: Project file: Describes the condition and properties of all open
Views. Project files do have the extension *.msbprj.

2 Record file: Record file: Contains the actual data and all information, relevant
for the data recording which are: data rate, protocol, defined regions, which
event types are recorded and time of their recording. Record files do have the
extension *.msblog.

Why this splitting into two files?
Stored sessions (projects) corresponds to the user request to configure the
program individually for his own needs. These are mostly independent of the
recorded data. Perhaps he wants to adapt the placement and display of the
views to the screen resolution or use other fonts than the default ones.
On the other hand record files contain information which are independent of
the session settings. These information about the protocol, time stamps, regi-
ons, used signal names and (de)activated event types. Furthermore recordings
should be analyzed by different persons with different ideas about the configu-
ration.

43

KAPITEL 9. SESSION MANAGEMENT

By this splitting some advantages are added:

The storage of the recording is done independent of the current session.

A recording can be loaded into an existing session without disturbing it.

Other users can examine the data with their individual configuration.

Project files can be purposefully defined for certain analysis and forwarded.

By the clear separation between project and record file you always can examine
a recording with your own program settings or you can use another predefined
program configuration for the analysis.
Project and record files have their own icon to make the distinction easier. They
are linked to the MSB-RS232 software while installation and can be opened by
a double click

9.2 Store and reload projects

A project file
stores all session settings
and has the extension
*.msbprj

Storing and reloading of projects are executed from the control program. The
seperation into a session and recording file is done automatically like described
before.
Likewise a recording file (if existing) is loaded when you open a project.
The same applies when you start the MSB-RS232 software with double-click on-
to a project file *.msbprj from the Windows file explorer. Opening of a project
file automatically loads the associated recording file msblog too.
Please note that certain settings like the baudrate are stored as default in the
session file as well as in the recording file as mandatory part.

A record file
contains the data and
also all transmission
parameters. It has the
extension *.msblog

As soon as a recording is loaded by the software this information is fetched
from the recording file and (over)written into the session configuration. This ap-
plies for the protocol settings (baudrate, parity, stopbit) and for definition of the
signal names and activated events. These settings are inseparably linked to
the recorded data.

Create a pure project file without data recording

To save a current session as configuration for later examinations you
have to save it as project without data or you can delete the record file
to get the pure project file.

9.3 Automatic storing of a session
This process is done transparently in the background as soon as you close
the current session by closing of the control program. The MSB-RS232 software
stores all necessary settings in a configuration file with the following naming:

ANALYZERTYPE-SERIALNUMBER.msbprj

Typical names are:

44

9.3. AUTOMATIC STORING OF A SESSION

MSB-RS232-MSB00000.msbprj
MSB-RS232-PLUS-MSB05001.msbprj
MSB-RS485-MSB00000.msbprj
MSB-RS485-MSB04080.msbprj
MSB-RS485-PLUS-MSB00000.msbprj
MSB-RS485-PLUS-MSB05002.msbprj

If you did not connect an analyzer the settings are stored in the file ANALYZERTYPE-MSB00000.msbprj

The location of the default project files depends on your OS. Windows User will
find them under:

C : \ User \USER\ AppData \ Roaming \ IFTOOLS \ Ser ia lAna lyze r \VERSION\ Defau l t s

except for Windows XP where they are be stored under:

C : \ Documents and Se t t i ngs \USER\ A p p l i c a t i o n Data \ IFTOOLS \ Ser ia lAna lyze r \VERSION\ Defau l t s

Under Linux the default project files directory is:

/ home /USER/ . IFTOOLS / Ser ia lAna lyze r /VERSION/ Defau l t s

45

KAPITEL 9. SESSION MANAGEMENT

46

10
The virtual Ledtester

The current line level indicating LED testers are standard tools
for checking the signal levels at the RS232 lines. Their virtual
counterpart has a few advantages.

The inspection of the current line state is possible by a simple line monitor,
designed like an LED line test tool. The virtual LED tester uses 2 symbolic
diodes for both line states for better visualization.
The red LED’s on the left side signalize a positive signal level, the green ones

Virtual Ledtester
with standard names...

on the right side a negative level. In the range ±0.3V both LEDs are off, that
corresponds to an invalid signal level.

Blended levels
and individual names...

By default the current state is displayed independent of a running recording.
This corresponds to the synchronization to the last recorded event. Therefore
the scroll button in the toolbar is activated and the virtual LED tester acts like a
real tester.
You also can use the LED tester for watching the status of earlier data in the
recorded data stream.
Click the ’Sync’ symbol in the toolbar. With this the line state monitor is syn-
chronized with the active display window, e.g. a data monitor. Or you freeze the
current state by clicking the ’Lock’ Button.

The level of a RS232 line is alternatively described with logical 0/1 as space/-
mark or as a physical positive or negative voltage. Most time this is more con-
fusing than helpful. To make it a bit easier the Ledtester fades in additional
information about the line conditions. Simply move the cursor over the Tester
to make this information visible.

Level Description

1M A logical 1, mark refers to a physical -3V to -15V Level on the line
(green LED with a minus Symbol)

0S A logical 0, space refers to a physical +3V to +15V Level on the
line (red LED with a plus Symbol)

Real Ledtester
LED circuit

As all other Views the virtual Ledtester also updates the signal names as soon
as these are changed in the control program. This is also true when you change
the RS232 line assignment between DCE and DTE notation.

47

KAPITEL 10. THE VIRTUAL LEDTESTER

10.1 The toolbar
The toolbar offers a quick access to the most needed functions.

A End: Saves all settings and closes the window.

B Display mode: According to the mode the ledtester either shows always
the current (last recorded) line states or locked or actualizes its content
synchronous to the other windows.

48

11
The Data View

You are searching for certain data sequences? For
communication breaks of a certain length? The data monitor
shows the data in their real time sequence, alternatively in
decimal, hexadecimal or ASCII and additionally contains parity,
framing or break information. Regular expressions allow the
search for any data pattern and much more...

The data view displays all transmitted and by the analyser recorded data bytes
in their sequence. Changes in the control lines are fade out, so that only the
pure user data is shown.
The data bytes can be shown separate for A or B or together for A and B, see
Signal selection. The latter is useful for watching the reaction to sent data.
If you want to examine the data separate for input A and B without mixing them
simply start two data monitors.
You also can watch different sections of the same data stream. You can open
as many windows as you need. The PC-Resources are the only limitation.

11.1 User Interface
The data monitor shows the transmitted data bytes like a hex editor. Default
are 8 characters or bytes1 per line, displayed in hexadecimal notation and in
the ASCII representation. Every line starts with the current address or position
as the offset from the beginning of the data stream. Non printable bytes e.g.
the carriage return sign are displayed as a dot.
Use the arrow keys to move the Cursor while additional information is displayed
in the Statusline like the exact time, position and quantity in relation to the
complete data stream.

In case of a communication error (framing or parity) the data monitor fades in
the error into the associated data byte. This is also done for the break condi-
tion, which could be misinterpreted in the data stream as a null byte, see the
following section 11.1.1.

1Strictly spoken 9 bit values because the MSB-RS232 analyzer supports transmissions with 9
bit data length.

49

KAPITEL 11. THE DATA VIEW

With the integrated Lua script interpreter you can calculate the displayed data
in any form, convert a sequence of data in another format and display the result
in the Lua output.

Integrated Lua

Even more - you can colorize and mark the displayed data in real time control-
led by a Lua script. For instance if you like to emphasize a curtain protocol or
some special sequences of interest. And if you wish to validate an additional
checksum too - no problem. A little Lua script will do the job and marks the
according bytes in the display as correct or wrong.
All Lua related functions are grouped below the main window and can be called
quickly if needed. For more information see section 11.6.

The information in the status line is always related to the current cursor position.
The first left value Pos: states the exact position inside the data stream. Only
data bytes are counted, other events like level changes are ignored.
The second value Time: shows the exact time when the data byte has occurred.

11.1.1 Display of data errors

Displayed data errors
Frame, Parity, Break

In an asynchronous serial data connection a data byte is transmitted as a fra-
me of bits. Every byte starts with a start bit, followed by a number of bits (5 to
9), an optional parity bit and an ending stop bit. The whole sequence is called a
data frame. The start bit (or better the falling edge of the start bit) is especially
important since it not only marks the beginning of the frame but also triggers
and resynchronize the data sampling of the recipients. The signal picture below
gives you an impression how a data frame looks like on the physical (logical)
level as displayed in the signal monitor.
If the analyzer recognize a wrong frame, for example there are more or less
data bits as set in the connection settings, these data bytes are marked with a

50

11.1. USER INTERFACE

’F’ (frame error).
A ’P’ (parity) error is shown when the parity bit does not fit with the record
settings. This happens when the record is made for instance with an even (E)
parity (something like 38400 8E1) and the data is transmitted with an odd (O)
parity (38400 8O1).
Both - frame and/or parity errors can be also caused by a wrong or jittering
baud rate. They are always and indication, that something with your transmis-
sion (or at least the recording) goes wrong.
A break is indicated as ’B’ and defined as a specific time which is significant
longer than one character transmission where the signal level is low. The ac-
cording data byte therefore shows a null value but must not be confused with
a real 0 byte. The analyzer distinguishes between real breaks and null bytes.
Breaks are sometimes used as telegram delimiters or to reset the recipient.
You can open a signal monitor and set its synchronization settings to follow
other views, see the following section 11.1.2. Afterwards just click the erro-
neous data byte in the data monitor and it will be displayed in the signal view
for further evaluation.

Signal in Sync Mode
shows clicked data byte

In the example picture above the signal view shows clearly the reason for the
parity error. The record was adjusted to 8E1, but the data was transmitted with
8O1 (odd parity). The analyzer marks the data byte because it expected a even
number of bits in the frame (including the parity bit) and therefore a high level
of the parity bit (displayed as blue in the frame ruler).
Sometimes only a few data errors occurs. If you want to be sure, that there is
definitely no error in the data, you can search for them as described in section
11.5.3.

11.1.2 Synchronizing
Each analysis window can synchronize its current view with other windows
(see Synchronizing the data view). Is the data monitor the active window, that
means the one which gets your inputs, than every move of the cursor sends a
sync signal to other opened windows.
This includes the cursor movement as a result of a search or positioning. In

Scroll, Lock or Update
display by other views

this way you can watch the signals in the signal monitor, remotely controlled by
the search for certain data sequences.

51

KAPITEL 11. THE DATA VIEW

Leftclick the designated data byte to fade in its representation in other views.
Likewise the data monitor reacts on a synchronization from other views and
fades in the respective data section, where the cursor is positioned onto the
data byte nearest to the original event.

How the data monitor acts when it receives the sync signal from another active
window determine the sync-buttons in the toolbar.
By default the data view is locked, the window does not react on changes.
Please note that the data monitor always generates a sync signal, independent
of the choosen display lock/unlock function. Windows which shall not react on
sync signals have to be locked.

11.1.3 Data direction
The data monitor optionally displays the sent, the received or both data at the
same time. Default is the combined display of both directions. You can switch at
any time between the display types by using the respective key in the toolbar.
The selection also defines which data are stored as a binary file. If you choose

Data selection
Single channels or both

both signal inputs A+B both are stored, otherwise only one of them.
In this way it is possible to save the recorded data or parts of it depending on
the data direction in one file.

11.1.4 Addressing the window content
Besides the navigation by cursor or the left scroll bar the data monitor offers an
absolute positioning and shift relative to the current position..
Click the symbol in the toolbar or open the dialog via View→Goto. Or simply
just press Ctrl+G.
Simply enter the absolute address or the wanted offset and click one of the
following keys.

Absolute or relative
positioning with Goto

Absolut: Moves the data sector to the entered address, shortkey Alt+A.
Plus: Adds the entered value to the current position and moves the data view
towards data end, shortkey Alt+P.
Minus: Subtracts the entered value from the current position and moves the
data view towards data start, shortkey Alt+N.

The input can be made in decimal, hexadecimal or binary format. Simply click
on the used number format. Like most other dialogs you can leave this dialog
open as long you need it.

11.2 Data selection
If you press the left mouse key while the cursor is on one of the displyed data
byte a context menu opens. In this menu any section of the recorded data can
be selected. You can mark the beginning or the end of the selection.

You can also mark the beginning of a region with Ctrl + left mouse key and the
end with Shift + left Mouse key. This corresponds to the file selection in Mirco-
soft Windows Explorer. The selection is marked with a light blue color.
If you want to select all data, just press Ctrl+A.

52

11.2. DATA SELECTION

The data selection can be stored seperately or assigned to a Region with F4.
By storing special data sequences you can examine these data for transmission
errors or compare to other data sequences.
With the export or copy and paste mechanism you are allowed to evaluate any
desired section of data in other applications.

11.2.1 Copy and Paste

Copy and Paste
in a word processor

Copy and paste copies the selected range as text into the clipboard and paste it
into another program. If the target application supports RTF like the most word
processing software (for example WordPad®, Microsoft Word®or OpenOffice
Writer®), the copied data will be inserted with the origin color information, i.e.
the data of port A are shown as red, data of port B as blue2.
Pure text editors (like Notepad) doesn’t provide any text formating. Therefore
the information of the data direction has to be visualized in a different way. Data
bytes received at port A precedes a dot, data from port B a colon.
The text display is generally in the hexadecimal format to avoid problems with
different character fonts.

00000000 | :73 :65 :6e :64 :20 :64 :61 :74 :61 :20 | send data
00000010 | :77 :69 :74 :68 :6f :75 :74 :20 :65 :72 | without er
00000020 | :72 :6f :72 :0a .73 .6f .6d .65 .20 .72 | ror.some r
00000030 | .65 .73 .70 .6f .6e .73 .65 .0a :66 :72 | esponse.fr
00000040 | :61 :6d :65 :21 :0a .66 .72 .61 .6d .65 | ame!.frame
00000050 | .20 .72 .65 .73 .70 .6f .6e .73 .65 .0a | response.
00000060 | :00 .00 :70 :61 :72 :69 :74 :79 :0a .70 | ..parity.p
00000070 | .61 .72 .69 .74 .79 .20 .61 .6e .73 .77 | arity answ
00000080 | .65 .72 .0a .00 .6e .6f .20 .6f .6f .70 | er..no oop
00000090 | .73 .00 :31 :32 :33 :00 | s.123.

11.2.2 Save data selection
The data monitor allows to save any selected range (see Data selection) as
binary data into a file. This file herewith contains an accurate series of the
marked data. You will appreciate this when you want to compare the recorded
data sequences to others, available as data files.
For Example when you know the result of the recorded data or the original data
and want to know if these are transmitted correctly. Simply select the wanted
range or all data with Ctrl+A and click the menu item File→Save as....
If you have activated the data of both inputs (A+B) both inputs are stored. For
a comparison it makes sense to select one data direction only.

11.2.3 Export a data selection
To analyze a section or all recorded data with spread sheet analysis you can ex-
port these as a CSV (Comma Separated Values) File. Spreadsheet programs
offer extensive statistical tools to evaluate the data. For example the frequency
distribution of single data or minimum and maximum times between the bytes.
The export capabilities concern the data only. If you are interested in an analy-
sis of other events read chapter Export selection in the event monitor.
Select the wanted range and click on the entry export as CVS in the file menu.

Data export
as a CSV file

2Coloured Copy and Paste is supported only in the analyser software for Microsoft Windows.

53

KAPITEL 11. THE DATA VIEW

In the opening export dialog you can select from the list of the available values
any value by clicking on it and moving it with the right arrow to the list of the
export values. Repeat this for all interesting values.
To change the sequence of the export values click on the value to shift and
move it up or down with the up or down arrow.
Likewise you can remove a value from the export list with the left arrow.
Then enter a name for the export file and click on ’OK’ to start the export.
For exporting the current view of the data monitor is regarded. The data is
exported as hexadecimal values with prefix 0x, or as decimal value or as ASCII
character included in apostophes. The same applies for the addresses.
(The address is the position of the data byte in th data stream). An example for
the hexadecimal address and data format:

"Timestamp(us)","Address","Input","Data"
3547,0x000050,A,0x20
3547,0x000051,B,0x20
3634,0x000052,A,0x21
3634,0x000053,B,0x21
3720,0x000054,A,0x22
3720,0x000055,B,0x22
...

The same selection showing a decimal displaying address and the data as
ASCII.

"Timestamp(us)","Address","Input","Data"
3547,00000080,A,’ ’
3547,00000081,B,’ ’
3634,00000082,A,’!’
3634,00000083,B,’!’
3720,00000084,A,’"’
3720,00000085,B,’"’
...

Note! The timestamp resolution is in micro seconds (us). Because we have
record this samples with a loop back jack, always two data events on data
channel A and B have the same timestamp.

11.3 Settings
The data display can be adapted to your own requirements. Just open the setup
dialog in the menu Settings→Configure Data Monitor...
Every view offers only those setup possibilities which are relevant for this view.
In case of the data monitor it is:

Display: Number and form of columns and data.

Colours: Coloring rules for representation and marking of certain data.

Font: Font type and size.

All settings can be tested with the apply button before they are finally accepted
with the OK button.

54

11.4. THE DATA INSPECTOR

11.3.1 Columns and data format
In this part of the settings dialog Settings→Configure Data Monitor... you can
individually select the number of columns as well as the kind of display (hexa,
decimal, ASCII). The number of lines are changed by extending or reducing
the display window.
In addition you can fade in the generally defined names for the first 32 cha-
racters of the ASCII character set (control characters), e.g. to display ’LF’ for
linefeed instead of Hex 0A.
Not printable characters can be displayed alternatively as a dot or as the origi-
nal character according to the chosen font type.

11.3.2 Coloring data
The data monitor allows to color any data depending on the data source. That

Coloring data
with colour rules...

is an important feature if you want to highlight certain data bytes or sequences.
For example the EOS character like carriage Return and/or Line Feed. Or cha-
racters wit a set 8th or 9th bit as often used in bus protocols to separate data
from address commands.

With version 5.0 the number of colour rules is limit to 4 for a better usability and
what we experienced as sufficient in most cases.
Each rule contains the data source or data channel (A or B), a ran-
ge for the data value and the color to dye these data bytes. You can
switch every rule on or off individually by enabling or disabling it.
The input of the data values from/to is done in decimal where the
range is 0 to 511. Values above 255 makes sense only if you ana-
lyze transmissions 511. with 9 data bits.
The rules are processed in the sequence from 1 to 4 (or from top
to bottom). Rules can overlap. In this case the last rule is regarded.
With this it is possible to overwrite rules in parts to recolor single
bytes of a rule defined before.
All entered rules are automatically stored and are at the same time
available for all later opened data monitors.
Color schemes are intended for simple applications. If you want
to mark the data with complex rules use the integrated Lua script
editor, see chapter 11.6.

11.3.3 Change the font
Besides the number of columns and the representation of the data bytes you
also can alter the font type, e.g. to use a font with letters of equal width instead
of the default proportional font or to adapt the letter type and height.
Click on Settings→Configure Data View to open the settings dialog.

Choose another font
in the settings dialog

The chosen font type is automatically stored.

11.4 The data inspector
Watching the transfered data is one thing. To find out the reasons for commu-
nication problems sometimes it is necessary to analyse the exact timing for
the transfered data. What is the time difference between two bytes? Or how
long does it take to receive the answer for a sent data string? Click on the ’In-

55

KAPITEL 11. THE DATA VIEW

spect’ symbol in the toolbar or press Ctrl+I to open the data inspector. The data
inspector offers some informations related to the current byte:

The data inspector
shows time distances and
converts data byte values

Position: The absolute position of the byte and it’s source (Port A or Port B).
State: Error state of the byte, i.e. Parity, Framing or Break.
Absolute Date/Time: Shows the absolute date and time of the received byte
in your locale time format.
Time difference: Displays the distance between the previous and next byte.
View as...: Converts the data byte value in different formats.

Display the line states

To watch the current line state in parallel to the data byte simply open the
’virtual LedTester’ in the control program and switch it to synchronizing
operation.

The virtual Ledtester
shows the current line

levels

11.5 Searching the record
The data monitor contains some functions which are optimal adapted to the
search for data and data sequences. So different searches are possible. The
search for a certain series of data bytes, for too short or too long times bet-
ween request and answer, or simply for transmission errors like parity, framing
or break. Since every search starts from the beginning or the current cursor
position all search functions can be combined in any way.

11.5.1 Pattern search
One of the outstanding attributes of the data monitor is the search function for
special data sequences. The search input is not limited to simple comparisons
of data strings. In fact the Search dialog allows the input of so called regular
expressions.
Regular expressions are extended by the wild card characters ’*’ and ’?’, known
from the MSDOS DIR Command. So the command DIR *.HTM lists all files
which have the extention HTM.
DIR FILE?.TXT lists the files (when available) FILE1.TXT, FILE2.TXT etc. Si-
milar mechanisms for searching special data sequences are offered by the
Search dialog of the data monitor. It is opened by the search symbol in the
toolbar or simply with Ctrl + F.
Generally search starts at cursor position! By default the search is starts with
the begin of the data recording. You also can start the pattern search beginning
from any other time stamp within the data stream. For this purpose position the
cursor of the data monitor at the desired start position and activate the button
’Search from cursor position’.
To find a special sequence you first have to describe this sequence in the input

Find any string
with regular expressions

box. It can be a simple string, e.g. LOGIN in a modem connection. Click on the
Search button to start the search in the recorded data stream.
The search function depends on the displayed input signals. If only Port A is
displayed only data bytes from this input are regarded.
Often the searched data can not be described by a simple data series. For ex-
ample the recorded data stream can contain the word ’LOGIN’ in the following

56

11.5. SEARCHING THE RECORD

combinations: LOGIN, Login or login. The latter ones can be described like in
MSDOS with ?ogin for search. To find all three variants you have to describe
the search pattern as a series of the characters L,O,G,I,N, where each charac-
ter can be a capital letter or not.
For the conversion a regular expression is used. The expressions are listed in
the Table below.

[L l] [Oo] [Gg] [I i] [Nn]

Every character is described by a Set which exactly corresponds to the sear-
ched letters.
Imagine you inspect a data connection where from time to time the CR of a CR-
LF(carriage return line feed) sequence is missing. That means you search for a
single LF WITHOUT a CR directly before. The appropriate regular expression
is:

[! \ x0D] \ x0A

and means: all characters except Hex 0D(means CR), followed by a Hex 0A
(LF).
A regular expression is a series of any charcter, where certain characters can
have a special function. They are listed in the following Table . If you want to use
one of the special characters as a normal one, e.g. if you search for Password?
and ’?’ is NOT any charcter but really the question mark, you have to quote it.
This is done by a preceding \ char. For instance

Passwort$ \ backslash$?

With the ’*’ char in a search pattern any data sequence is marked. That makes
sense only if this character is framed by other search patterns, otherwise ever-
ything will be found.
The following expression finds all names found between ’LOGIN’ and ’PASS-
WORT’ but not single ’LOGIN’ Sequences without following ’PASSWORT’ Se-
quence:

LOGIN*PASSWORT

As a special case the search mechanism in the DataView also supports 9-bit Search for 9-Bit
sequencesvalues. A 9-bit value cannot input as a normal character. The DataView there-

fore extends the definition of any hex value as described above by a ’special’
3-digit hex input. Such a value (or 9-bit character) is initiate with a upper \X
followed by three hex digits.
The following example looks for a sequence starting with a Hex 10B or Hex 133
followed by Hex 33:

[\ X10B \ X133] \ X033

The following tablelists the available expressions.

Expression Meaning

? any character

* any character string

57

KAPITEL 11. THE DATA VIEW

[abc] a char out of the set abc

[!abc] a char not member of the set abc angehört

\xHL a char in hexadecimal notation, H is the upper half byte, L the
lower half byte

\X1HL Same like above, but supporting 9-bit values. The first digit
must always 0 or 1. Valid range is from 000 to 1FF.
Please note, that a upper ’X’ always requires a 9-bit hex digit!

\? the character ?

* the character *

\[the character [

\] the character]

\d any decimal character 0...9

\n the linefeed control character (Hex. 0x0A)

\s any whitespace character (blank, linefeed, carridge return,
horizontal tab)

\\ the character \

A misentry will be showed as a selected marked input, so you just can retype
a corrected version of your matching rule.

11.5.2 Search for time distances
Beside the pattern search facilities the data view also supports the search for
defined time distances between two data events. Click onto the search symbol
in the toolbar or press Ctrl+F and select the slider Delay.
The time specification is always done in seconds, e.g. 0.0015 for 15 millise-
conds. The smallest time unit correspondends to the resolution of the analyzer
and is 0.000001 or 1µs (MSB PLUS series 10ns). Time distances can be de-

Find time distances
and transmission

intermissions

fined as limits for over or under stepping or as a range. The button with the
link symbol decides if both times have to be valid for the search result (AND-
relation) or only one of them, which is the default.
Please take a look to the following table:

Time(s)
>=

Logic Time(s)
<

Result

1.000000s OR 0 Finds all distances which are longer than
1s OR shorter than 0s. Negative times are
not valid, so that the search is for times
longer than the entered 1s.

1.000000s AND 2.000000s Finds all times which are longer than 1s
and shorter than 2s, i.e. Times between 1
and 2 seconds.

58

11.6. INTEGRATED LUA

10000000s OR 0.001s Finds all times which are greater than
100000s or smaller than 1ms. Since such
long times will never happen only times
smaller than 1 ms will be found.

Besides the time specifications also the sequence plays a role. That means
that it is important to know if the time is measured between two data bytes in
one direction (e.g. at port A) or between a data byte at port A, followed by a
data byte at port B. That is interesting if you want to examine the reaction times
between request and answer.
The sequence which shall be obeyed for the search process can be set expli-
citely. Default is Any, i.e. the sequence is irrelevant.
Please note, that the sequence can be set only if both data sources A and B
are activated in the data monitor, otherwise it is disabled.

11.5.3 Search for transmission errors
The search for error conditions refers to errors in the data transmission. These
are framing and parity errors. Breaks are usually no errors, but because they
must not be mixed with the nul byte and are sometimes used for initializing or
resetting of communication partners they are also integrated into the search
mechanism.
The search for errors is easy. Mark one or more error conditions and start the

Find errors
just with a click

search with a click onto the start button.

11.6 Integrated Lua
The DataView was the first View with integrated Lua support. It was completely
reworked in version 5.0 and comes with a lot new features making the proces-
sing of the data with Lua more easier than ever.

Number Converter
written in Lua

First at all: The former design of a line based watch expressions folded out
below the main window was replaced by a general and freely positionable out-
put window. The new output window let you display single line results but also
complex tables as shown in the left picture.

And: You do not longer stick on the limited editor as provided by the earlier
watch window! The DataView now uses the new full featured stand-alone Lua
script editor as all other Views with Lua support.
The new editor not only helps you with predefined code frames it also let you
test selected Lua code lines and complete scripts as well.
The editor is described in detail in chapter 16.

With Lua you are able to answer questions like:

What is the CRC16 checksum of a given sequence?
What is the 32 bit unsigned integer value in little endian of the selected four
bytes?
How long does it take to transmit the selected number of bytes?

59

KAPITEL 11. THE DATA VIEW

There is almost no limit what you can do with Lua as long as your code is
restricted to the DataView internals.

11.6.1 How does it work?
Exchanging data between the DataView and Lua is provided by a very simple
mechanism. The DataView passes all necessary information like cursor posi-
tion and a possibly selection to Lua. In Lua you have access to all recorded
data. You can process them as desired. The result must be passed back to the
DataView as a simple Lua value or as a table. In detail:
The DataView executes a certain Lua function every time the cursor is moved
(or the script is updated). This function onchange is called with the current cur-
sor position and the start and end of a given selection. The function is defined
as:

1 function onchange (cursor , selbeg , selend)
2 −− i npu t your code here
3 end

In the function body you can access every data byte received during a recording
either absolutely or relatively to the passed cursor position. For instance:

1 function onchange (cursor , selbeg , selend)
2 −− i npu t your code here
3 return data . a t (cursor) : va l ()
4 end

The example simply returns the value of the received data byte at the given
cursor position. The module function data.at let you access any recorded
data byte by its position as shown in the DataView address column. The result
is a data object covering not only the data byte value but also the source and
time when it occurred. Here we asked the object for its value with val().
In line 3 we simply return it as a single Lua value and the DataView shows it in
the Lua output window.

Results returned by onchange are always interpreted as a table of key/value
pairs. In case of a single result (as in our example above) the key shows the
result, the value is kept blank which gives you something like this:

A8

Now let us extend our example to return all information of the data byte at the
current cursor position:

1 function onchange (cursor , selbeg , selend)
2 −− i npu t your code here
3 local d = data . a t (cursor)
4 return {
5 [" Value "] = s t r i n g . format ("%02X" , d : va l ()) ,
6 [" Time "] = d : t ime () . . " s " ,
7 [" Source "] = d : d i r ()
8 }
9 end

In line 4 we create a table with {...}, add the data object information as
key/value pairs (see 17.2.5) and return it. The result in the Lua output window
is displayed as:

60

11.6. INTEGRATED LUA

Source 1

Time 354.84122s

Value 3F

Since the result is already a table (or array) of key/value pairs it is easy to dis-
play it as a two-column grid with the left column showing the key and the right
column the according values.
You may notice that the output is displayed in a different order. The DataView
always arranges the results in the alphabetic order of the key names. Therefore
Source, Time, Value.
We will stick to this for now and give you a solution in the following section.

Our next examples demonstrates how to use the passed selection parameters
to calculate a simple module 256 checksum.

1 function Mod256Sum(from , to)
2 local chksum = 0
3 for i =from , to do
4 chksum = chksum + data . a t (i) : va l ()
5 end
6 return chksum % 256
7 end
8
9 function onchange (cursor , selbeg , selend)

10 i f selbeg and selend then
11 i f selbeg > selend then
12 selbeg , selend = selend , selbeg
13 end
14 return { [" Resul t : "] = Mod256Sum(selbeg , selend) }
15 else
16 return { [" Resul t : "] = "No s e l e c t i o n ! " }
17 end
18 end

Line 1...7 covers a simple checksum function adding up all bytes from start
index from to to and returning the lower 8 bits (by the remainder or module
operator %).
The DataView passes a selected data sequence with its start and end address
as parameter selbeg and selend. If they are nil, (no selection at all) the script
returns ’No selection!’ in line 16.
You can select a data sequence forwards and backwards. The latter may lead
to a selection end (index) lower than the start. We test this in line 11 and use a
little Lua syntax sugar to swap the start/end values if necessary3.
Afterwards we call the checksum function and return the result as a decimal
value.

In our last example we will show you how you can mark (colourize) certain data
bytes or sequences relative to the cursor position.
This is especially of interest if you synchronize the DataView by the Proto-
colView. Clicking a telegram in the ProtocolView passes the first AND last tele-
gram byte as a selection to the listening DataView. You can use this information
in onchange to mark the according data bytes in the DataView. For instance
to highlight parts of the telegram in the DataView.

3Lua provides multiple assignments. In this case Lua first evaluates all values and only then
executes the assignments. Pretty nice to realize a value swapping in a single line.

61

KAPITEL 11. THE DATA VIEW

You will find an appropriate example (Modbus-RTU) in the DataView scripts.
We will start with the basics and mark the byte on the previous cursor position
red, the cursor byte itself green and the byte on the next cursor position blue.

1 function onchange (cursor , selbeg , selend)
2 −− i npu t your code here
3 data . cu rso rco lou rs {
4 [−1] = 0xFF0000 , −−> red
5 [0] = 0x00FF00 , −−> green
6 [1] = 0x0000FF −−> blue
7 }
8 end

We explain the details in section 11.7.1 but the meaning should be clear enough.
The table cursorcolours is just a Lua table of key/value pairs. The key is the
position relative to the cursor (0 means the cursor itself), the assigned value a
RGB colour in hex notation4.
In the code above we assign three colours red, green and blue. The function
must not return a result if you don’t need any output in the Lua output window.
Every time you move the cursor (and onchange is called), the main window
updates its content using the pairs in these tables.

11.6.2 Sorted results
At least back to our first example. We mentioned, that a Lua table does not
keeps the key/value pairs in a specific order5. The DataView output window
arranges the result in an alphabetic order but sometimes you expect the output
exactly in the same order as you have coded it.

1 return {
2 [" Value "] = 1 ,
3 [" Time "] = 2 ,
4 [" Source "] = 3
5 }

Source 3

Time 2

Value 1

You can try to force the output order by using some sort pattern. For instance
you can add a prefix number separated by a tab "\t" to get the desired order
with:

1 return {
2 [" 1 \ tValue "] = 1 ,
3 [" 2 \ tTime "] = 2 ,
4 [" 3 \ tSource "] = 3
5 }

Value 1

Time 2

Source 3

The DataView ignores all text until the first tab (and including the tab) before it
displays the key/value pairs in the Lua output window. Nevertheless this is still
annoying. Especially if you have more than 3 lines and must adapt the numbers
every time you rearrange the order in your code.
The next and final solution therefore use a little sort function to add the desired
prefix. Here is the complete example code:

1 function onchange (cursor , selbeg , selend)
2 local d = data . a t (cursor)
3 local n = 0
4

40xRRGGBB whereas RR is the hex 8-bit red value, GG the hex 8-bit green value and BB the
hex 8-bit blue value.

5There is an order but it depends on the internal hash number!

62

11.6. INTEGRATED LUA

5 function s o r t ()
6 n = n + 1
7 return s t r i n g . format ("%02 i \ t " , n)
8 end
9

10 return {
11 [s o r t () . . " Value "] = s t r i n g . format ("%02X" , d : va l ()) ,
12 [s o r t () . . " Time "] = d : t ime () ,
13 [s o r t () . . " Source "] = d : d i r () ,
14 }
15 end

Line 3 defines a local counter variable (used for the ordering). Line 5...8 is the
sort function and returns an increasing prefix "01\t"..."99\t" with every new
call6.
Now we just have to add the sort() function to our key names as shown in
line 11...13.

11.6.3 Select and run a Lua script
The analyzer software already comes with some Lua script example for the
DataView. One is a number converter which transforms the data sequence at
cursor position in different numbers formats and especially helpful if you want
to ’read’ transmitted number values.
Another script shows you how to calculate a checksum of a data selection.
The DataView groups all Lua related controls below the main window.
There you can select and run a Lua script, open it in the editor for modifications
or write a new one.

The button ’Open Lua Output’ opens the output window to show the results of
the selected script. The output window itself is displayed until you close it again.

Please note!
There is no Lua on/off switch! The integrated Lua doesn’t need much resources
and therefore can stay active in the background even if you do not open the Lua
output window. If you definitely want to suppress any output or marked data by-
tes just select the idle script.

11.6.4 Script errors
Nobody is perfect! Even coding a small script may leads to syntax errors or
typos. The editor itself cannot handle the errors (even if you can test code snip-
pets in the editor) because the script is executed by the DataView.
If your script contains an error, the DataView informs you about it in the Lua
error button:

6Note that 11 is ordered between 1 and 2, therefore the explicit 2 digits with a leading zero.

63

KAPITEL 11. THE DATA VIEW

This button is inactive as long as no error occurs. In case of an error you can
click the button to get more information about the error cause.

Script error dialog

The appearing script error dialog indicates the kind of error and the line in your
script file where you can fix it in the editor.
The red error message in the error button disappears automatically when you
save the corrected script. Or when you enable the clear error message check-
box in the dialog before closing it. But then the error may occurs again because
you did not solve the cause.

11.6.5 Debugging
Knowing that there is a bug in your script in one thing, solving it quite another
one. An appropriate way in script languages (because of the short edit/test
cycles) is to insert output messages at specific positions. This allows you to
test if the script executes a certain part of code or to check the value behind a
variable.
The DataView offers its own debug output window. You can open it by clicking
the according entry in the ’View’ menu or press Ctrl + Alt + O.
We describe the modul later. Here in short. You can output any text or value or
combination with the function:

1 function onchange (cursor)
2 debug . p r i n t (" Cursor Pos i t i on " , cursor)
3 end

You can delegate the debug output to a central function to enable/disable all
debug outputs in your script with a single flag.

1 DEBUG= true
2
3 function p r i n t (. . .)
4 i f DEBUG then
5 loca l s = " "
6 for i , v in i p a i r s (arg) do
7 s = s . . v . . " \ t "
8 end
9 debug . p r i n t (s)

10 end
11 end
12
13 function onchange (cursor , selbeg , selend)
14 local d = data . a t (cursor)
15 i f d then
16 p r i n t (" Cursor : " , cursor)
17 end
18 end

The function debug.print(...) accepts a variable number of arguments,
thus we iterate over all parameters in line 6 and build the result string in line 7.
Provided that the global variable DEBUG is true (line 1) the function outputs the
result in line 9.

11.6.6 Template file location
The location of the Lua templates/scripts for the DataView has changed with
version 5.0.0.

64

11.6. INTEGRATED LUA

Linux user find them under:

~/.IFTOOLS/SerialAnalyzer/7.0.2/Templates/DataView

Under Windows the directory is located under:

C:\Users\USERNAME\AppData\Roaming\IFTOOLS\SerialAnalyzer\7.0.2\Templates\DataView

But you must not worry about this. If you start a new template or save a modi-
fied script under a different name, the editor keeps the right path for you. And
there is a good reason for this:
The DataView scans this path for new scripts always when you click the tem-
plate/script selection button. All found template scripts are afterwards listened
alphabetically in the opened script list.
You can - of course - save a script under a different location. But we only recom-
mend it when you want to pass a template to a colleague, another computer or
for other reasons.
As long as you want to use a template within the analyzer application, it has to
stay in the according folder above!

11.6.7 Import a template
As mentioned before: If you want to use a template provided from a colleague
or another source you have to stored it in the right location, otherwise the Da-
taView will not find it.
Importing or adding a new template to the list of already existing DataView
scripts is easy. Just drag and drop the new template file (extension msbtml)
into the open DataView window. That’s all! The program automatically stores
the new template in the according Template/DataView directory and applies it
to the current record.
If their is an error, you will get an according note in the status bar error button.
The program will also warn you when a template with the same name already
exists.

11.6.8 How can I remove waste scripts
The normal script file operation (load, modify, save) is in the responsibility of
the editor. Hence the DataView does not provide any file handling except for
loading/updating a selected script.
But you can easily start the editor, click the ’Open file’ icon in the toolbar and
delete or move the not longer wanted file from within the system file dialog or
explorer.

11.6.9 Limitations
You can run any operation in Lua, write complex functions and perform extensi-
ve evaluations. But the DataView allows each Lua script only a certain number
of computing operations (recursions) or time period for the execution. As soon
as your entered script exceeds this limit you get an error message. And that is
of a good reason.
If you have programmed an endless loop for whatever reason the data monitor
will kindly notify you instead of wordlessly stop further co-operation.

65

KAPITEL 11. THE DATA VIEW

11.7 DataView specific Lua extensions
As like the ProtocolView the DataView extends Lua by several modules com-
mon to all views providing an integrated Lua. They all are described in detail in
chapter 18. The one module exclusively available in the DataView is the data
module.
A second Lua extension which you perhaps already know from the Protocol-
View is the debug module. Even if this one is no special part of the DataView,
we describe it here too because - as the name suggests - it’s purpose is to help
you debug your code in the context of the DataView.

11.7.1 The data module
This module provides you random access to all received data bytes by pas-
sing the data byte address (or number) and is indispensable when running Lua
scripts by the DataView.
Please note that the received data bytes are counted from zero and that the
number depends of the displayed data sources A and/or B.
The module let you also colorize data relative to the cursor position. The data
module in detail:

Function Description
at Let you access the value (including 9 bit values) with val(),

the direction (or source A, B) with dir() and time stamp of
any received data byte with time().

cursorcolours an internal table holding pairs of relative position and colour
which are used to colourize the data relative to the cursor
position.

data.at
Returns a data object covering all information about the data byte at the given
index/position. The data object allows you to query the data byte value, the di-
rection and time when it was received by the analyzer.

data.at(index)

• index: The index or address of the data byte in the range of the availa-
ble data. An invalid index/address (outside the data range or negative)
results in a nil value.

You can query the data byte value, source and time directly with:

Example

1 function onchange (cursor , selbeg , selend)
2 −− i npu t your code here
3 return {
4 [" Value "] = s t r i n g . format ("%02X" , data . a t (cursor) : va l ()) ,
5 [" Time "] = data . a t (cursor) : t ime () . . " s " ,
6 [" Source "] = data . a t (cursor) : d i r ()
7 }
8 end

66

11.7. DATAVIEW SPECIFIC LUA EXTENSIONS

But this always starts a new random access with data.at for every data object
property. A better approach is to store the data object returned by data.at in
a local variable and use it later.
It is also always a good strategy to check if the result of the data.at(...)
call returns a valid object. This is not the case, if you click a data cell in the
window outside the record range (grey marked as XX). We do this in line 4.

Example

1 function onchange (cursor , selbeg , selend)
2 −− i npu t your code here
3 local d = data . a t (cursor)
4 i f d then
5 return {
6 [" Value "] = s t r i n g . format ("%02X" , d : va l ()) ,
7 [" Time "] = d : t ime () . . " s " ,
8 [" Source "] = d : d i r ()
9 }

10 end
11 end

data.cursorcolours
This is an internal table of key/value pairs used to assign a certain hex colour
value (for instance 0xFF0000 means red) to a relative cursor position (some-
thing like 0, 1, 2 but also -1, -2).
Please note! In contrary to the standard Lua indexing the relative position
counts from zero! A zero index means the cursor position itself, a negative
index counts backwards and a positive index addresses the data bytes after
the cursor.

The following example marks the data byte before the cursor red, the cursor
itself green and the byte after the cursor blue.

Examples

1 function onchange (cursor , selbeg , selend)
2 −− i npu t your code here
3 data . cu rso rco lou rs {
4 [−1] = 0xFF0000 , −−> red
5 [0] = 0x00FF00 , −−> green
6 [1] = 0x0000FF −−> blue
7 }
8 end

11.7.2 The debug module
The DataView contains a built in debug window which you can use to show
special information about the state of your script or the results of certain ope-
rations. The debug module covers all functions to output any text or value. You
can also suspend, resume or summarize the output in case of repeating mes-
sages. To open the output window for debug messages, just press:
Ctrl + Alt + O

67

KAPITEL 11. THE DATA VIEW

Function Description
clear Clears the content of the debug window.
print Outputs the given arguments in the debug window. You can

pass as many arguments as you want. Each argument (text
or value) must separated with a comma.

resume resumes a former suspended output.
summarize if activated the debug output collects all identical messages

and show it only once with the repeating number.
suspend stops (suspends) the debug output. All further print calls will

be suppressed.
timeprompt put the current time (hh:mm:ss) in front of each debug output.

You can enable or disable it by passing true or false to the
function.

debug.clear
Clears the content of the debug output window.

debug.clear()

Examples

1 function onchange (cursor)
2 −− p r i n t the cu r ren t cursor p o s i t i o n (address)
3 debug . c l ea r ()
4 debug . p r i n t (cursor)
5 end

debug.print
Output the given, comma separated, arguments in the debug window.

debug.print(param1,param2,...)

• param: comma separated list of parameters.

Examples

1 function onchange (cursor)
2 debug . c l ea r ()
3 debug . p r i n t (" Pos : " . . cursor , " Value : " . . data . a t (cursor) : va l ()
4 end

The code above outputs the cursor position and the value of the data byte at
the cursor position.

debug.resume
The resume function continues the previously suspended debug output. It is
very unlikely that you will use this function and it’s counterpart suspend. Since
they are part of the debug module, we nevertheless dedicate them a short
description.

68

11.7. DATAVIEW SPECIFIC LUA EXTENSIONS

debug.resume()

Examples

1 function onchange (cursor)
2 local d = data . a t (cursor)
3 i f not d then
4 debug . suspend ()
5 else
6 debug . resume ()
7 end
8 debug . p r i n t (cursor)
9 end

In the example above we stop all debug outputs when the cursor hits an invalid
data, for instance when the cursor is clicked on a data field outside the recorded
data. As soon as the cursor is back on valid ground, we resume the output.
The example is a little bit constructed but should be enough to understand its
meaning.

debug.summarize
Collects all identical debug messages and output them when the first different
one occurs. The repeated messages are shown like this:

THE DEBUG MESSAGE
The previous message repeated n times.

n means the number of repetitions.
Usually you put a statement like debug.summarize(true) at the beginning
of your script, that is outside of the onchange() function because there isn’t any
need to execute the command more than one a time. (See line 1 in the example
below).

debug.summarize()

Examples

1 debug . summarize (true)
2
3 function onchange (cursor)
4 debug . p r i n t (data . a t (cursor) : va l ()
5 end

As long as you move the cursor of data bytes with the same value, the sum-
marize mechanism just collects the message but suppress any output until the
cursor hits a different byte. Then it outputs the number of equal bytes and the
new one.

debug.suspend
This function suppresses all debug output via debug.print till another call of
debug.resume is executed. See the resume example above for usage.

69

KAPITEL 11. THE DATA VIEW

debug.timeprompt
Enable or disable an additional prefix with the current time for every debug
message when the output is done. The default is an output without any prefix.
If activated, each output is headed by the current time in the format hh:mm:ss.
For instance:

12:24:48: My debug message

Examples

1 debug . t imeprompt (true)
2
3 function onchange (cursor)
4 debug . c l ea r ()
5 debug . p r i n t (" Pos : " . . cursor , " Value : " . . data . a t (cursor) : va l ()
6 end

11.8 The toolbar
The tool bar is used for a quick access to the most needed functions. Some are
identical to other views, some are specific for the data view..

A End: Saves all settings and closes the window.

B Display mode: According to the mode the window either shows always
the current (last recorded) event or locked or actualizes its content syn-
chronous to the other windows.

C Data direction: The protocol monitor can display both data directions
(port A and B) combined or separately to display them in different win-
dows.

D New View: Opens a new window with the same sector and settings.

E Pin settings: Applies (pins) the current window settings as default setup
when open again.

F Search dialog: Opens the dialog for pattern search and transmission
interceptions.

G Goto...: Opens the Goto dialog to select the visible section by a absolut
address or offset.

H Data inspector: Starts the data inspector.

70

11.9. SHORT COMMANDS

11.9 Short commands

Key commands
of the most important
functions

Aktion Kurzbefehl

Online Help for the data monitor F1

Save selection as region F4

Save selection as data frame region Shift+F4

Start selection Ctrl+Left mouse key

End of selection Shift+Left mouse key

Select all Ctrl+A

Clear selection Shift+Ctrl+A

Copy selection into clipboard Ctrl+C

Export selection Ctrl+E

Open search dialog Ctrl+F

Open goto dialog Ctrl+G

Show data inspector Ctrl+I

Open View in a new window Shift+Ctrl+N

Open the debug output window Ctrl + Alt + O

Close window Ctrl+Q

Save selection as binary file Ctrl+S

71

KAPITEL 11. THE DATA VIEW

72

12
The Event View

When did an event occur? Did a certain level change happen
while data was transferred? Or was an error condition (break,
parity, framing) recognized? The event monitor lists all occurred
events, searches for event sequences or level conditions and
exports events as CSV file.

Contrary to the data monitor the event monitor displays all occurred events (da-
ta and level changes) with their time relationship. While the data monitor offers
a lot of mechanisms to investigate data streams and to represent the data view
of the recording, the event monitor is optimized for the display and search of
level changes.
That concerns to changes in the level of the control signals as well as asyn-
chronous events like framing or parity errors or breaks.
Each event gets equipped with a time stamp which represents the exact time
of its occurrence with a resolution of 1µs. The time distance between has no
influence on the display. So signal conditions and changes before and after the
recording are easy to identify.

The search for certain data sequences is the task of the data monitor. As soon
as a search contains a level condition, a change or an error condition the even
monitor is the right tool.
Beside this you can use the event monitor also to extract a certain part of a
record and save it as a new one, see section 12.4.1.

With the LevelFinder not only any static level can be found but also sequence
of events and level changes. The single search parameters can be combined
optionally with AND or OR and can additionally be combined with a time dura-
tion to search for events within a defined time frame or to exclude them.
The search options are described in detail in section 12.3.

12.1 User Interface
The window of the event monitor at any time offers a quick overview over the
level conditions. From here you start the search for event sequences, the export
of any section or compare different sector of the recorded data stream.

73

KAPITEL 12. THE EVENT VIEW

12.1.1 Each line is one event
The event monitor displays the recorder events in list form where every line
represents the current event and its changes compared to the preceding line
status. The list display can be freely configured. Except for the first entry (the
type of event) you can fade each column out by drawing its width to zero with
the mouse. (In the view menu you can reactivate the faded out columns).

Disable columns
Simply draw the column
width to zero.

The description of the columns automatically adapt to the defined names. The-
se names can be set globally in the control program.
The individual columns have the following meaning:

1 Type
Type of the event, either a data byte or a signal level alteration.

2 Number:
Number of the event, counted from 1.

3 Timestamp:
The time when the event occurred in 1µs relative to the beginning of the record.

4 dt:
Time distance to the former event.

5 Alteration:
Describes the alteration causing the event, see 12.1.3.

6 Signals:
Signal levels alterations of all analyzer input channels.

74

12.2. NAVIGATION THROUGH THE EVENT LIST

12.1.2 All event types at a glance
The event monitor distinguishes between the following event types:

Symbol Event type Description

Data byte Data byte received at Port A.

Data byte Data byte received at Port B.

Level
change

Any change of the level of any signal, including level
changes of the data lines.

Framing Data byte received with a framing error.

Parity Data byte received with a parity error.

Break Break detected.

The indented error symbols do never occur singular, but always together with
(followed by) a data byte event because it signals an error in the data transfer.
Changes in the levels of a data line (TxD or RxD) likewise trigger level events,
followed by a data event as soon as the data bits are completely received.

12.1.3 Signal alterations
A signal alteration event is recorded every time a signal level of one of the 8
analyzer inputs has changed. The MSB-RS232 distinguishes 3 (tri-state) signal
levels: High, low and invalid (idle). The column ’Alteration’ gives a description
which signal modification(s) caused the event. A prefixed plus (+) sign indica-
tes a switch to the high level, the minus (−) a switch to low and the exclamation
mark (!) that the given signal goes back to an idle or invalid level. For instance:

+TxD !CTS !RI

The TxD signal went high and at the same time (within the scope of the samp-
ling rate) CTS and RI switch to an invalid/idle (or undriven) signal level.

-RTS -CTS

In this example both lines, RTS and CTS switched to a low signal level.

Level changes of the data lines

If you do not see level changes of the lines TxD and RxD you have to
activate them in the control program. If you are not interested in these
changes deactivate them to save computing power and disk space since
these events come very often.

12.2 Navigation through the event list

Go to event
absolute, stepwise or

time-dependend

The event monitor offers beside the usual scrolling possibilities by mouse, mou-
se wheel, scroll bar or arrow and page up/down keys also the directed jump to
the next or last event of the same type.
Click onto the desired event and than click the ctrl key together with the down
arrow resp. up arrow. In this way you easily navigate from break to break or

75

KAPITEL 12. THE EVENT VIEW

from data byte to data byte.
For longer records you can purposefully fade in ranges from a determined event
or time stamp. The latter one awaits the input of a time offset from the start of
the recording.
The specification of an event number allows to jump to a determined event or
to move in determined steps from event to event. For example all 1000 events
forth and back.

12.3 Event search with the LevelFinder
The detection of definite event sequences is one of the unique

LevelFinder
searches for level

changes, errors and time
relationships between

events

features of the event monitor. In contrast to the data monitor the search is not
restricted to certain data sequences (for which the data monitor is the best
solution) but intentionally adapted to changes in the physical level of the single
lines. What does that mean?
You can set up the event monitor to search for the level change and/or the
condition of any line. You can combine it with the occurrence of a certain data
byte or a number of set bits within a data byte or an asynchronous event like
break, framing or parity error. Click onto the magnifying glass symbol in the
toolbar or press Ctrl+F to open the search dialog.

12.3.1 Enter a search pattern
The search pattern may be complicated. The integrated level finder accepts the
search input in form of logical expressions where every expression can exist of
one or more conditions which can be combined with AND or OR.

Expression: condition1 condition2 ... conditionN

For example:

AND: RTS=on CTS=off

The formulation of the single conditions correspondents to the intuitive question
for searching of defined conditions. In the preceding example: Search for the
position in the recording where at the same time RTS is on AND CTS off.
Each condition consists of a target (which the condition shall be applied to) and
a description of this condition. So:

Target=Condition

Target is either a single signal line, described by its (also user defined) name
or a data source A or B.
Condition defines the status which the target has to have for the search. In ca-
se of one signal line this could be one of the three possible level conditions on,
off or invalid. If the target is a data source the possible conditions are an exact
data value, a bit pattern or an error.

Correct definiton of a condition

Conditions must not contain blanks. Please note, that the names ’A’ and
’B’ are deserved and must not be used for signal names.

76

12.3. EVENT SEARCH WITH THE LEVELFINDER

12.3.1.1 Formulate a level condition
Level conditions can be defined for each of the eight RS232 lines. This inclu-
des the data lines RxD and TxD. Not defined lines are simply ignored and not
regarded for the search.

Input Description
1, on, high, mark, -V Signal level is a logical one which corresponds to a

physical level of < -5V (measured at the RS232 line).
All listed descritions are equal. RTS=on is the same
as RTS=1 or RTS=high.

0, off, low, space, +V Signal level is a logical Zero which corresponds to
a physical level of >+5V (measured at the RS232
line). All listed descritions are equal. RTS=off is the
same as RTS=0 or RTS=low.

none, invalid, 0V Signal level is invalid. That corresponds to a physical
level of -3V to +3V (according to the RS232 defini-
tion), measured at the RS232 line. The definition of
an invalid level thus is RTS=none or RTS=invalid or
RTS=0V.

12.3.1.2 Formulate a data error
Data errors occur only in connection with a data source. Therefore the target
has to be A or B.

Input Description
break, frame, parity The data at the data line A or B shows a break or

a framing or parity error. For example a parity error
can be found by A=parity or B=parity.

12.3.1.3 Formulate a data value
Each of the data sources A and B (the data bytes received at these ports) can
be checked for equality or for set bits. The latter one is meaningful when certain
bit combinations may are not allowed in the bytes or have a special meaning,
defined by the used protocol.
Any data are described by with the * symbol.
The level finder offers four types of entry possibilities:

Input Description
A=*, B=* Every data event (A or B) delivers a hit, the data

value is not regarded. Makes sense if you search
for any data event.

A=’x’, B=’x’ Checks the target (A or B) for equality with the cha-
racter, enclosed by the apostrophes. The search for
a question mark, received at port A is written as :
A=’?’.

77

KAPITEL 12. THE EVENT VIEW

A=$xx, B=$xx Checks the target (A or B) for equality with the he-
xadecimal value. A search for a question mark, re-
ceived at port A is written as: A=$3f or A=$3F.

A=~xxxxxxxx,
B=~xxxxxxxx

Checks the target (A or B) for the set bits in
xxxxxxxx. For this check the bit pattern is logical
AND combined with the data and then checked for
equality. To find a data byte at port B with a set 7th
bit enter: B=~10000000.

12.3.2 Search input and search

Example project
in the folder
examples/RS232-
Analyzer

Before you start open in the control program the sample project
Scan-for-signal-levels.msbprj in the examples\RS232-Analyzer
folder. It contains a number of data errors and a combination of level changes
which we will search for later.

Search for a parity error at Port A

Open LevelFinder dialog with Ctrl+F

Click onto the text field and enter �A=parity�

Click the start button

Click the button ’More’ to search for the next parity error

Go back to the last hit by click on ’Back’

The visible segment of the monitor changes its position with every hit and dis-
plays the found event as a grey line.

Search for a parity error at Port A or Port B

Click onto the text field and enter �OR: A=parity B=parity�

Search a parity error at Port B with DTR high

Click text field and enter �AND: B=parity DTR=high� eingeben

That was easy. We make it a bit more complicated and search for:

Search for RxD and TxD low and DTR, RTS and CTS all high

Now enter into the text field �AND: RxD=0 TxD=0 DTR=1 RTS=1 CTS=1�

Click the button ’more’ to find the next hits.

You can combine all level conditions, data and data errors combine in any way.
It is not possible to combine different logical operations within one search ex-
pression, that means mixing of AND and OR expressions. But we will see, that
AND and OR are allowed in succeeding expressions. Sequences with different
search expressions are used for searching of signal changes . For example the
search for a change in the CTS line while at the same time the RTS line is
active.

78

12.3. EVENT SEARCH WITH THE LEVELFINDER

12.3.3 Search for signal changes
Changes are definedby two or more sequenced search expressions which de-
scribe the line state before and after the signal change. In this respect we
expand the search inputs for the possibility to enter more than one expression
in different lines. It is possible to vary the logical operators.
Watch the picture at the side. The interest is on the lines DTR, RTS and CTS.

Looking for a level
change?

No problem with the
LevelFinder!

We want to find the signal change displayed in the ideal zoomed display.
All together there are three changes that have to happen one after another:

1 DTR=off RTS=off CTS=off
2 DTR=on RTS=off CTS=off
3 DTR=on RTS=on CTS=on

In each state all three signal levels have to be fulfilled, that means that for every
single search expression the AND condition has to be true.
Enter each expression in an own line in the text field of the level finder Since
the AND operation is the default you can omit it and write the lines exactly as
noted above. (Instead of DTR=off you also can write DTR=0).

The LevelFinder
finds data bytes, errors
and level changes incl.

time measurement.

Wrong input - what happens

If you made a syntactical error, e.g. a wrong name or an invalid charac-
ter, the level finder answers with a yellow text field as soon as you start
the search.

You can write any search combinations, e.g. search for a special data byte
when at the same time the DTR line is high or any data byte from port B,
followed by a change in the CTS level. The number of search expressions is
unlimited but you have to keep in mind that every expression costs additional
computing time and slows down the search process.
The search process runs in parallel to the application and can be aborted at
any time by clicking the abort button. Even during a longer search you can ope-
rate the event monitor in a normal way and speed.
The LevelFinder saves the current search expression automatically. That also
is done when you close the monitor or the complete session.

Start a search beginning with a defined position

Click onto the line where the search shall start and activate Start search
from the cursor position.

12.3.4 Searching with time specification
As a special feature the LevelFinder offers an integrated stop watch which can
be started in every search expression and can be read out in the following
expressions. Thus it is possible to search for level changes which exist a certain
time only. For instance a low level at RTS with a duration smaller than 0.3
seconds.

Level duration?
Search with the

stop watch

1 RTS=on

79

KAPITEL 12. THE EVENT VIEW

2 RTS=off watch.start

3 RTS=on watch.time<0.3

Please note that all conditions within an expression are combined per default
with the AND operator. In line 2 the change of the RTS signal from high to low
is defined and at the same time the watch is started. Strictly spoken the watch
is reset and loaded with the time of the occurred event, the change of the RTS
line to low.
In the third line the change of the RTS level back to high is AND-combined with
a duration smaller than 0.3 sec. Positive signal edges which occur later than
after 0.3 sec. are ignored.

12.4 Mark a selection
Certain functions of the event monitor like the saving of events as an indepen-
dent record file or the export in CSV format for later evaluation or as a region
always refer to a before defined selection.
The selection of any event sequences is done like in other programs. Left click
in the list representation onto the line, which shall be the first event of the se-
lection. Then scroll by mouse wheel or scroll bar through the recording until the
desired last event of the selection. This one click with the left mouse key while
pressing the Shift key.
To jump to the last event of your selection you also can use the level finder or
the Go-To dialog. It is only important that you click the last event together with
the Shift key.
Please note that you can select only ranges and not single arbitrary events.
With File→save as... you can save the selection as an own record file
(extension *.msblog) for later evaluation with the analyzer tools. In this way
the interesting parts of a recording can be extracted and the necessary storage
capacity can be reduced.

12.4.1 Save a selection as a region
A region serves for marking of certain sections of the recorded data which are
of special interest. Contrary to a selection regions are valid for all analysis tools.
As soon as a region is added it is visible for all analysis windows.
Regions are displayed in different colored ranges and exist independently from
the event monitor until they are explicitly deleted.
To save a selection as region just press the F4 key or click in the menu bar:
Edit→copy to region
A maximum of eight regions are available. Under: View→show region dialog
the available regions can be renamed, fade in or out or removed. And they gi-
ve you a short access to a certain section in the record simply by clicking the
according region in the region dialog. Regions are part of the record and are
stored together with the data in the record file (extension *.msblog). You will
find further information about regions in chapter 15.
The following picture shows a section in the event list with three visible regions.

80

12.4. MARK A SELECTION

12.4.2 Export a selection as CSV file
The even monitor allows to save any selection of recorded events as a Comma
Separated List (Values) (CSV). You will use this when you want to import these
values into a spread sheet program like Microsoft Excel, Gnumeric or Open
Office.
At this time you will probably ask why you should want to import the recorded

Data export as CSV
for external evaluation

events into a spread sheet program.
Assume you want to sort the recorded events for the longest pauses between
two sent data bytes. Or you want to create a statistic of the events or data. Re-
quirements of this type are the domain of spread sheet calculation programs.
The event monitor offers you the possibility to benefit from them.
At first mark the selection of the events to be exported. With Ctrl+A you can
select all recorded events at one time.
Click in the menu File→export as CVS.

Export dialog

An export dialog opens where you can select a value from the list of available
values by clicking and moving with the right arrow button into the list of exported
values. Repeat this for all desired values.
To change the sequence of values click onto the value to be moved and shift it
in the desired direction with the up or down arrow.
Likewise you can remove a marked entry back to the selection list with the left
arrow. Finally you have to enter a name for the export file and click the OK
button to start the export.
The list of available events contains the following items:

Value Description
Number Event number, starting with 0.

Type(Event) The following types are defined: A=Data at port A,
B=Data at port B, L=Line level change.

81

KAPITEL 12. THE EVENT VIEW

Time(s) Time stamp of the event as offset to the start of the
recording in seconds with microsecond precision.

Data The data (9bit) as an decimal value (0...511).

Data/State contains either the data up to 9 bit (event type A/B) or
the tri-state status of all lines, see line⇒1.

Error in case of a transmission fault it contains the kind of
error like B (Break), F (Frame) or P (Parity).

dt same type Time difference to the last event of the same type in
seconds with microsecond precision like 0.251518.

dt last Time difference to the last occurred event, i.e. the last
recorded change in the line. The result is in seconds
like 0.000217.

Date/Time(s) Absolute date and time with microseconds of the event
like 2014-08-20 09:49:31+148762s.

Alteration Shows only the changes since the last event as dis-
played in the alteration column.

SignalLevels Shows the state/alteration of all lines as displayed in
the signal line columns. The graphical display is chan-
ged to a respective text string⇒2.

*DCD,*RxD,*TxD,... Exports the state of the given signal as a number. The
leading ’*’ differs the signal name from any other field.
-1 represents -12V or mark or ’logical 1’
0 is an invalid level resp. an inactive line state
+1 represents +12V or space or ’logical 0’⇒3.

[1] Data status
The content of this field is depending on the data type. If it is a transferred data
byte it contains the data value in the lower 9 bits, the upper 7 bits are 0.

Bit Unused Data Byte Bit

15 8 7 0

In case of a level change the upper 8 bits contain the logical state of the lines.
The lower 8 bits contain the valid states. If it is ’0’ the line is in an invalid condi-
tion, that is a level of -0.3V to +0.3V.

Bit
15

Line State Bit
8

Bit
7

Valid State Bit
0

RI RTS CTS DTR DSR RxD TxD DCD RI RTS CTS DTR DSR RxD TxD DCD

Pin9 Pin8 Pin7 Pin6 Pin4 Pin3 Pin2 Pin1 Pin9 Pin8 Pin7 Pin6 Pin4 Pin3 Pin2 Pin1

[2] Text symbolism of the level conditions
Sent data and line states is different information and consist of a different num-
ber of fields. Data are represented as hex value with a respective ASCII or con-
trol name, while the lines are listed as eight status and transition sequences.

82

12.5. MEASURE TIME DISTANCES

To reach the same number of columns for the CSV export the data as well as
the conditions of the lines are embraced by " ... ".
The conditions and transitions of all lines are described by the following names:
^ : High level
- : Invalid level
v : Low level

A sequence of -v describes a change from invalid to low level, while a level
change from high to low is described by ^v. The following extraction shall clarify
this:
"Number","Type(Event)","Time(s)","SignalLevels"
0,L,0.000000,"--DCD,--TxD,-^RxD,-vDSR,--DTR,-vCTS,--RTS,--RI",
1,L,12.312625,"--DCD,--TxD,^^RxD,vvDSR,--DTR,v^CTS,--RTS,--RI",
2,L,21.424749,"--DCD,--TxD,^^RxD,v^DSR,--DTR,^^CTS,--RTS,--RI",
3,L,24.096831,"--DCD,--TxD,^^RxD,^^DSR,--DTR,^vCTS,--RTS,--RI",
4,L,25.192664,"--DCD,--TxD,^^RxD,^^DSR,--DTR,v^CTS,--RTS,--RI",
5,L,25.984652,"--DCD,--TxD,^^RxD,^vDSR,--DTR,^^CTS,--RTS,--RI",
6,L,26.559368,"--DCD,--TxD,^^RxD,v^DSR,--DTR,^^CTS,--RTS,--RI",

[3] Signal names during exporting
Please note, that the lines do not have to have the standard RS232 names
since you can rename them according to your application. The new names
appear instead of the standard names. Compare the chapter signal names in
the control program.

12.5 Measure time distances
Every event can be marked by right click the event line (item). Next to the right
side of the type column a clock symbol is fade in and in the status line the time
difference from the marked event to the current event at the cursor position is
displayed.
A second right click onto the marked event removes the clock mark again.

12.6 The toolbar
The tool bar is used for a quick access to the most needed functions. Some are
identical to other views, some are specific for the event monitor.

83

KAPITEL 12. THE EVENT VIEW

A End: Saves all settings and closes the window.

B Display mode: According to the mode the window either shows always
the current (last recorded) event or locked or actualizes its content syn-
chronous to the other windows.

C New View: Opens a new window with the same sector and settings.

D Pin settings: Applies (pins) the current window settings as default setup
when open again.

E Event dependent scrolling: Jumps to the last or next event of the same
type like the one at cursor position.

F Event search: Opens the level finder dialog for event search.

G Goto...: Opens the Goto dialog to select the visible section by event
number or time specification.

12.7 Short commands

Key commands
of the most important
functions

Action Short command

Online Help for the event monitor F1

Opens the search dialog (LevlFinder) Ctrl + F

Open Goto dialog Ctrl + G

Jump to the time marker Ctrl + T

Select all Events Ctrl + A

Clear selection Ctrl + Shift + A

Save selection as region F4

Jump to last event of the same type Ctrl + Up arrow

Jump to next event of the same type Ctrl + Down arrow

84

13
The Protocol View

With the analysis of protocols you enter the next level of
communication. The seemingly arbitrarily occurring data are
sorted and grouped according to your rules. Output functions
allow you to format and color data sequences individually.
The exchanging of data between two or more communication partners general-
ly happens depending on a protocol, which defines the format of the transferred
data together with their content and meaning. The smallest data unit is called a
telegram or datagram. While the data monitor displays the transferred data in
the sequence of their occurrence without any interpretation (which sometimes
has advantages) now the analysis of protocols and datagrams is the next level
for understanding the communication.

For this, the data stream, captured by the analyzer, has to be split into single
data sequences or telegrams before displaying them on screen. Since there
are no defined rules (resp. many of different standards) for the definition of
datagrams, a lot of different practical realizations are known. They vary from
simple end-of-string characters (EOS), start (STX) and end (ETX) marks to the
usage of certain pauses between single data packets (Modbus RTU, Profibus),
run time length codes and other definitions.

...and more...
Further more: Every telegram should be shown with certain information: num-
ber, address (bus participant), function code, data (in various formats), check-
sum, telegram delimiter and other things which will become needful when you
have to interpret or analyze a communication.

Lua Version 5.3

It’s obvious that even a wide range of predefined protocol styles cannot meet
all requirements. Especially when the analyzer program has to face individual
protocol definitions or preferences. The Protocol View therefore handles both,
the splitting of the continuous data stream into separate telegrams and the in-
dividual displaying of the telegram contents by an integrated script language.
Lua has already proved its suitability in the Data View, so it is more than logical
to use it again as the protocol template scripting language.

Lua provides you to create protocol templates with its full language strength.
You can write your own functions for checksum validation (beside an already
integrated checksum module which offers you some standard checksum algo-
rithms), you can replace certain telegram function numbers with more readable

85

KAPITEL 13. THE PROTOCOL VIEW

names and hide telegrams you don’t like to see.
And you can do this interactively and already during an active recording. The
recording itself isn’t disturbed. Your modifications are directly applied on your
recorded data so you can see the changes immediately.
We will discuss the whole template scripting later. At the beginning let us show
you the Protocol View in action.

13.1 User Interface
The ProtocolView is designed for an optimal usage when examine telegrams
which are part of the upper layers in the OSI model.
To avoid redundant accessories the main part of the ProtocolView window sim-
ply serves to list the transmitted telegram sequences as shown in the picture
with a Modbus RTU transmission.

13.1.1 Telegram window
The ProtocolView displays every sequence (or telegram) in a single line. Whe-
re a telegram in the data stream starts and where it ends is determined by the
selected protocol template script. The same applies - as mentioned before -
how the telegram data is displayed.
Each telegram can optionally be prefixed with one of the following information:
the telegram number, the telegram time (absolute and relative to the record
start), the duration of the telegram and the time distance to the former se-

86

13.1. USER INTERFACE

quence. All this is easily changeable in the settings dialog.

Telegram time and index

You can add optional information for every telegram (independent of the
used template) in the Settings menu under Settings→Configure Proto-
colView...

The prefixed information also indicate the source (or direction) of the telegram.
I.e. whether the telegram was recorded on Port A (red text) or Port B (blue
text). In a bus application you will - of course - find several devices speaking on
Port A, and others on Port B. Uncompleted sequences, that means datagrams
whose end condition is not yet reached (e.g. no end character received), are
marked with a punctuation behind the telegram number.
Please note! The punctuation is only shown in this field!

13.1.2 Synchronizing

Display modes

All Views have in common that they can synchronize or lock their displays or
always show the last recorded data. That also applies for the ProtocolView. You
can choose an autoscrolling behavior to see always the last detected telegram,
lock the window to study telegrams at your leisure or synchronize the telegram
display with other views.
A left click on the desired telegram let other Views update their display to show
their content on the clicked telegram position.
Likewise the protocol display is sensitive to synchronization from other views.
The sequence which is part of the synchronization is marked with the current
line selection.

13.1.3 Data direction

Direction modes

The IFTOOLS analyzers provide two independent data channels which are as-
signed to the source or direction of the transmitted data. In full-duplex bus sys-
tems like RS422 (or RS232) the meaning is clear. Other field-bus systems use
only on connection which is shared by all other bus participants like Modbus.
The analysers are able even to detect the direction in the latter case but it is
not always necessary. Anyway, with the data source selector you can display
the telegrams of only one source A, B or both A+B.

13.1.4 Open an identical view

Open a copy

Sometimes you want to stay at a current position because there is a telegram
you are very interested in. And you want to check it against other telegrams.
You cannot do it in the same window! But you can ’clone’ your current Proto-
colView window by clicking the ’clone’ icon.
Now you have two active ProtocolViews and you can compare different tele-
grams or sections in your record.

13.1.5 Pin your settings
The analyzer application stores the size, position and views settings by default
when you close the main control program.
But you can also determine which settings are applied to a new ProtocolView

87

KAPITEL 13. THE PROTOCOL VIEW

window when you execute it from the control program. In case of our Proto-
colView you can specify the used protocol and all other settings like the font,
display mode, direction and so on.
By clicking the pin icon in the toolbar, the current settings are stored in the con-
trol program as default setup for every new ProtocolView instance.
If you open a ProtocolView afterwards it shows up with your desired settings.

13.1.6 Goto a given telegram number
The ProtocolView numbering all telegrams consecutively. If you want to see for
instance the telegram with the number 10204, click the ’goto’ icon in the toolbar
or press STRG + G . Input the number and the main telegram windows
moves its content to display the desired telegram in the center line.
Inputs greater as the number of available telegrams forces a jump to the current
transmission end, negative numbers to the beginning.
Note: Set the display mode to lock or sync. In autoscroll mode the telegram
window always jumps to the last received telegram and will not stay on the
given telegram number.

13.1.7 Filter control
The filter control is very special and we will explain it in detail in section 13.4.
For now only one short comment: Filtering telegrams depends mainly on the
used protocol specification. You cannot filter telegrams for command functions
(like Modbus) it the protocol specification doesn’t include such things.
So the actual filter code is made by the template itself. Not every template of-
fers a filter, but if, you can select/input a filter criterion here.
In our Modbus example you can hide diagnostic telegrams or show only re-
quests/response for one device address. You can even filter for a given ad-
dress/function combination.

13.1.8 Choosing a range
With the export function you can process further any segment of the protocol
in other applications. For that you first have to mark the desired area.
The selection is done like the file selection in your operating system. Place
the cursor onto the first cell of the desired sector and click the left mouse key.
After that shift the visible section to the end of the range and mark the end of
selection with a left-click together with a pressed shift key. The field will become
gray.
If you want to mark all lines press Ctrl+A.

13.2 Protocol templates
The analyzer software already provides you with many templates for the most
used protocols. More will be added in future software releases. The currently
provided field-bus protocols are:

3964(R)
BACnet
DF1
DNP3
Executive (Vending machines)

88

13.2. PROTOCOL TEMPLATES

IEC60870-5-101
IEC60870-5-103
MDB/IPC
Modbus ASCII & RTU
MOVILINK
NMEA
P-Net
Profibus
SAE-J1587
SAE-J1922
SMA-NET
SSI (synchronous, only PLUS analyzers)
USS

Beside these there are several basic templates serving as a start for protocols
using 9-bit values, a certain start and/or end delimiter, a break (like LIN Bus)
and more.
You can - of course - also modify all of the standard templates for your own
purpose.

13.2.1 Select a protocol template
You can easily adapt another protocol just by clicking the protocol selector be-
low the main window. The adaption to the telegrams in the main window is
directly done after selecting a list item.
Thus you can test an transmission with different protocol specifications in an
uncomplicated way and - without stopping or restarting the record!

Remember! Regardless of the chosen template the record is never affected!
So even if a template gives you not the desired results, just try another one. If
no template fits your needs, you can contact the IFTOOLS support or adapt a
template to your protocol by yourself.

13.2.2 Modify a protocol template
The capability of the Protocol View to define sequences using Lua as a tem-
plate language exceeds -of course - the normal use of a fixed selection list.
Admittedly this demands a certain learning process concerning the syntax and
may sometimes be a bit hindering for trivial problems.
The predefined templates offer an easy start for own concepts. New templates
are automatically added to the protocol list and can be selected as easily as
the ones coming with the software.

For this click the New/Edit button on the right side of the protocol template
selector and the ProtocolView opens the according Lua template script in the
editor.
Since version 5.0 the ProtocolView not longer provides its own integrated editor
but use the new and lot better suitable Lua script editor coming as an separate

89

KAPITEL 13. THE PROTOCOL VIEW

program with the analyzer software.
The editor offers all features and comfort you are expecting from a really good
editor. But what makes the editor really good is:

It let you test any Lua code snippets in a sketch buffer and also selected li-
nes when you edit a protocol template. Beside this it offers code frame works
for new templates. You will find a detailed description of the editor in chapter 16.

At first you probably will change only small things: the color of the data, the
definition of a line end character or the idle time between the telegrams (as in
Modbus RTU). As soon as you save your changes in the editor the Protocol-
View instantly applies your changes onto the displayed telegrams in the main
window (even in an active recording).
If the template is erroneous a respective message is fade in into the status line
of the ProtocolView.

Apply the template

Please note, that a change in the splitting rules requires a new format-
ting of the recorded data and may take a while depending on the size of
the recording. The modification of the datagram representation affects
the display only and is directly visible.

You can also copy a predefined template for modification according to your
application just by open it in the editor and save it with another name.

13.2.3 Individual protocol setup

A setup dialog
here fore Modbus

When analyzing a field-bus transmission you are often confronted with ’varia-
ble’ protocol specifications. For example: An IEC60601-5-101 application can
require one or two address bytes for the bus participants. Another example is
Modbus where you may face a different setup for the interframe idle time.
It’s clear that you don’t want to adapt the template code every time your bus
requirement changes. The protocol template API therefore offers you to write
your own setup dialog - individual for every template. A existing dialog provi-
ded, you can open it every time you need to change some protocol settings
simply by clicking the Setup button. The image on the left shows the setup
for Modbus coded in the Modbus template.
A setup dialog is not mandatory. If a template doesn’t contains a dialog code,
you get an adequate information. The template dialog feature is covered in all
details in chapter 19.

13.2.4 Write a new template
The new editor is the pivotal point to handle all Lua code for the analyzer app-
lication. This will also apply when you want to add your own protocol template
(therefore the button named New/Edit).
In the editor toolbar click the ’new icon’ or press CTRL + N to start a new
Lua script file. The editor will ask you what kind of script you want to write.
Choose ’ProtocolView’ and the editor presents you a frame code especially for

90

13.3. TEMPLATE LANGUAGE SYNTAX

a protocol template. (You will find more details in the editor chapter 16).
We introduce the template language itself in following chapter 13.3.

13.2.5 Template file location
The location of the protocol templates (and all other scripts) has changed with
version 5.0.0.

Linux user find them under:

~/.IFTOOLS/SerialAnalyzer/7.0.2/Templates/ProtocolView

Under Windows the directory is located under:

C:\Users\USERNAME\AppData\Roaming\IFTOOLS\SerialAnalyzer\7.0.2\Templates\ProtocolView

But you must not worry about this. If you start a new template or save a modi-
fied script under a different name, the editor keeps the right path for you. And
there is a good reason for this:
The ProtocolView scans this path for new scripts always when you click the
protocol template selection button. All found template scripts are afterwards
listened alphabetically in the opened template list.
You can - of course - save a script under a different location. But we only recom-
mend it when you want to pass a template to a colleague, another computer or
for other reasons.
As long as you want to use a template within the analyzer application, it has to
stay in the according folder above!

13.2.6 Import a template
Sometimes you may want to use a template provided from a colleague or which
you got from another source. As mentioned before, the template must be sto-
red in the right location, otherwise the Protocol View will not find it.
Importing or adding a new template to the list of already existing files is easy.
Just drag and drop the new template file (extension msbtml) into the open Pro-
tocol View telegram window. That’s all! The program automatically stores the
new template in the according Template/ProtocolView directory and applies it
to the current record.
If their is an error, you will get an according note in the status bar error button.
The program will also warn you when a template with the same name already
exists.

13.3 Template language syntax
Every template (file or script) has to provide at least two functions. The first
one splits the incoming data into single datagrams (or telegrams). It contains
the code which is necessary to decide when a new telegram starts and when
it ends.
The second function let you control the appearance of every telegram in an
enormous field. Here you can specify how the telegram content (or parts of
it) are shown. For instance: You can convert a sequence of bytes into other
numeric formats, validate a checksum or label data sections with your own

91

KAPITEL 13. THE PROTOCOL VIEW

description. And you can color various sections of the telegram in your own
colors.
There is another - third function - to filter specific telegrams interactively using
the filter control in the toolbar. But at first we will concentrate us to the two
essential things, a template has to do:

1 Splitting the data stream into telegrams
2 Individual displaying of the telegrams

13.3.1 Splitting the data stream into telegrams
For the definition of a protocol template the first question has always to be:
when does a telegram start and when does it end? Sometimes an end condi-
tion is sufficient, i.e. a Carriage Return and/or Linefeed, or a alternation of the
data direction. But often the world is more tricky. You may thinking of binary
protocols with certain pauses between every telegram like Modbus RTU, Profi-
bus or similar.

The ProtocolView covers the complete splitting functionality in the function
split as shown in the following.

1 function s p l i t (data , i n t e r v a l , a l t e r n a t i o n , s t r i n g , f i l t e r)
2 −− here are your s p l i t i n s t r u c t i o n s and i t s r e t u r n s ta te
3 return STATE
4 end

This function is called every time a new byte arrived in the record and must
return one of the following states:

1 STARTED→ a new telegram begins
2 MODIFIED→ the data doesn’t do anything but increases the telegram length
3 COMPLETED→ the telegram is complete
4 REMOVED→ remove the current telegram for filter reasons
5 MARKED→ mark the current bytes as telegram start and continues

REMOVED obsolete?

Filtering telegrams by returning REMOVED is not longer recommended
because it has a lot of disadvantages, especially for more complicated
filter scenarios. See 13.5 for a far better solution!

It quickly becomes apparent that the current byte isn’t enough to detect a valid
start or end condition. For instance: An EOS (End Of String) condition consist
of more than one byte. Or: A telegram is specified with a certain start AND a
certain end.
That’s why the split function is called with additional parameters. They are:

1 data→ the current data byte (up to 9 bits)
2 interval → (short intval), the time distance to the former byte in seconds (with

microsecond resolution)
3 alternation→ (short alter), true when the direction has changed
4 string→ (short str), all received data since the last telegram as a byte string

92

13.3. TEMPLATE LANGUAGE SYNTAX

5 filter→ the current selection of the filter tool passed as a string

You can rename the parameter for your own purpose but don’t change the or-
der of the parameter! It’s also allowed to skip unused parameter from the right.

Ok, it seems more complicated as it is. Just let us make some little examples.
Imagine a simple protocol where every telegram ends with a linefeed.

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f # s t r == 1 then return STARTED end
3 i f data == 10 then return COMPLETED end
4 return MODIFIED
5 end

We don’t need the filter parameter and therefore skipped it (line 1).
Our example lacks of a specified start condition. In other words: A new telegram
starts with the first byte after the former telegram was finished with the linefeed
character.
The parameter str is a Lua string and contains the whole data of the current
(yet partly) telegram. In case of the first byte, the length of the string is 1 and we
have to return STARTED. Lua offers you a special length operator ’#’ to query
the count of bytes within a string (line 2). But you can also code it as

i f s t r : len () == 1 then . . .

Line 3 specifies the end condition. The telegram is complete when a linefeed
occurs. The parameter data contains always the current byte. We compare it
with the linefeed (character value is 10) and return COMPLETED in case the
condition is true.
In all other cases (the current telegram length is greater as 1 and the current
data byte isn’t a linefeed) the function returns MODIFIED.

Now let us adapt our little example to a protocol with a defined start and end
string. For instance something like the Modbus ASCII protocol.

STX
’:’

Data
ASCII coded data as 0-9 and A-F

EOS
CR LF

A telegram starts with a colon (character value is decimal 58) followed by the
data (the data field only allows the characters 0-9 and A-F). The end of the te-
legram is marked with a Carriage Return and Linefeed (CRLF). The according
split function is then:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
4 return MODIFIED
5 end

Line 2 compares all occurring bytes with the colon and returns STARTED as
soon as a colon is detected.
Line 3 searches for the CRLF in all currently received bytes ("\r\n" is the
Lua equivalent to CRLF). A found CRLF means the end of the telegram and
will return COMPLETED.
All other data bytes are assumed as the telegram data and therefore only

93

KAPITEL 13. THE PROTOCOL VIEW

MODIFIED the telegram.

We have covered the parameters data and str. But what about the remaining
intval and alter?
Imagine a protocol with alternately sent telegrams. Every telegram start is de-
fined as a change in the direction and you won’t bother with any further details.
Here is a fitting split function:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f a l t e r then return STARTED end
3 return MODIFIED
4 end

The parameter alter is always true when the source of the current data byte
isn’t equal to the former byte. All we have to do is returning a STARTED then.

Some protocols use a defined pause (specified as a idle time of the transmis-
sion line) as a delimiter between the telegrams, i.e. the Modbus RTU protocol.
The advantage of such a design is: The telegram doesn’t depend on ’special’
start and/or end characters and therefore can use a binary format for the data.
(There isn’t any data byte which must interpreted otherwise).

Telegrams with time gaps for framing
The Modbus RTU delimiter for instance is defined as a sending pause of 3.5
byte. Or generally speaking: The time which is needed to send 3.5 bytes with
the current baud rate.
And that’s where the last parameter intval comes into picture. intval is the
time distance to the former byte in seconds. The resolution is - as usual - 1µs.
The transmission time for a byte depends on the baud rate. Luckily the Proto-
colView provides you with some helpful functions. But first the split function
code:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f i n t v a l > t ransmiss ion . bytepause (3.5) then return STARTED end
3 return MODIFIED
4 end

The code should be clear enough except for the transmission.bytepause.
The ProtocolView extends the Lua language with its own module functions.
bytepause returns the sending time of the passed count of bytes for the cur-
rent baud rate in seconds. So we just have to compare the time since the last
byte with the calculated pause to detect a start condition. You will find a detai-
led description of the transmission module on page 218.

But hold on! What about the COMPLETED state?
The sending pause is both! The current telegram is COMPLETED by detecting
the pause AND a new telegram is STARTED at the same time. In this case the
ProtocolView marks the current telegram automatically as COMPLETED when
a new telegram starts.
Uncompleted telegrams are shown with a series of dots in the prefixed number
or index field (you can enable or disable the number field in the settings dialog).

94

13.3. TEMPLATE LANGUAGE SYNTAX

Special case: Telegrams consisting of only one byte
Telegrams with only one byte are a particular case because the single byte re-
present both: A STARTED and also a COMPLETED state. Exceptions to this
are only protocols with a idle time as a telegram delimiter like Modbus RTU or
ProfiBus1, because the telegram delimiter is independent of a certain byte.
But all other protocols with a predefined EOS (End of String) must consider the
specific nature of a single byte message. For instance:
Your protocol terminates every telegram with a linefeed (LF). Beside this a sin-
gle LF is used as an short acknowledge.
Without a special handling of a single linefeed the ProtocolView will display the
first occurring LF as an incomplete telegram until another one arrives. Here is
the split function of the EOSwithLF template:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f # s t r == 1 then return STARTED end
3 i f data == 10 then return COMPLETED end
4 return MODIFIED
5 end

Since the first byte is marked as the beginning of a new telegram also a single
LF will be handled in this way. You may consider to exchange the lines 2 and 3,
but this isn’t a solution. Then a linefeed will only be shown when it was the last
byte of a sequence with different bytes.
The split function processes always one byte after another. In case of a single
byte telegram the function therefore has to return both: STARTED and COM-
PLETED. Fortunately you can solve this just by combine both states in a single
return statement. See below:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f # s t r == 1 then
3 i f data == 10 then
4 return STARTED + COMPLETED
5 else
6 return STARTED
7 end
8 else
9 i f data == 10 then

10 return COMPLETED
11 end
12 end
13 return MODIFIED
14 end

Line 4 returns STARTED and COMPLETED only when a linefeed arrives (line
3) and if it was the first byte in the telegram (line 2). Both conditions make sure
that it is really a single LF.

Telegrams with a start sequence of more than one byte
There are certain protocols in which a telegram has to start with a byte se-
quence instead of a single character. For instance the DNP3 protocol uses the
bytes 0x05 and 0x64 (in hexadecimal notation) as a start and synchronisation
header. A simple DNP3 frame looks like:

1ProfiBus use a single byte message (SC) as a short acknowledge frame. The message con-
sists only of the byte E5h.

95

KAPITEL 13. THE PROTOCOL VIEW

Start
0x05

Start
0x64

Length Control Destination Source CRC

Apart from the fact, that such a protocol has to make clear that the start se-
quence must not occur in the data payload or in general in the remaining part
of the telegram frame, the split function nevertheless faces a problem here.

Consider the following situation: The split is called with an received byte
0x05 which - maybe - markes the start of a new DNP3 telegram. You can re-
turn the result STARTED - but hold on!
What about a following byte unequal to 0x64. In such a case the formerly retur-
ned result is simply wrong. You may suggest to wait until the next byte arrived
before checking for the 0x05 0x64 sequence. Even so the returning STARTED
will still be invalid because the telegram than won’t start with the 0x05 but with
the 0x64 and the very first byte of the start sequence will just ended as the last
byte of the former telegram.
What we need is a mechanism which ’marks’ a byte as a possible start and
continue checking the next arriving characters before deciding on the final re-
sult.

Here the MARKED result comes into play. Returning MARKED doesn’t start
a new telegram. On the contrary, the parsing of the incoming bytes continues
as if nothing had happened. First when the split function returns STARTED
(and only STARTED), the formerly marked byte (or byte position in the incoming
data stream) was used as a real new telegram start. An example:

1 function s p l i t (data)
2 i f data == 100 and l a s t == 5 then
3 return STARTED
4 end
5 l a s t = data
6 i f data == 5 then
7 return MARKED
8 end
9 return MODIFIED

10 end

How does it work?
The trick is to use a global variable last to hold the former data byte. By default
Lua variables are always global and initiated with nil. Normally we recommend
to avoid global variables and to use local in front of each variable definition,
but there are sometimes exceptions. This is one of them.
The first line in the function (line 2) checks the present byte passed as parame-
ter data with 0x64 and the former byte associated to last with 0x05. In the
beginning last is not defined. Lua creates it on the fly with a nil content (see
next section 17.2.8.2).
A matching comparison means the start of a new telegram and we simply has
to return STARTED (line 3).
Afterwards we update last for the next call of split (line 5).
The following condition in line 6 makes sure that a new telegram start (trigge-
red by returning STARTED in line 3) is always associated with 0x05 (or in other
words: MARKED).
If data is neither 0x64 nor 0x05 split ends up by returning MODIFIED to
attach the current byte to the internal telegram sequence.

96

13.3. TEMPLATE LANGUAGE SYNTAX

There is only one internal MARKED position!

A returning MARKED value in split always overwrites a former MARKED
position and therefore the final STARTED returns the position of the last
MARKED.

Global and local variables
Lua variables are global by default. They are accessible from all over the script
after their first occurrence. But this leads sometimes to strong results in the
script execution when equal named variables which are supposed to be inde-
pendent share in fact the same content. Consider the following lines:

1 function chksum (data)
2 n = 0
3 for i =1 ,# data do
4 n = n + data : byte (i)
5 end
6 return n % 255
7 end
8
9 function out ()

10 −− the cu r ren t te legram
11 tg = telegrams . t h i s ()
12 −− query the cu r ren t te legram leng th
13 n = tg . s ize ()
14 −− a simple checksum
15 sum = chksum (tg : s t r i n g ())
16 −− te legrams less than 8 byte need a spec ia l handl ing
17 i f (n < 8) then
18 −− do something wi th smal l te legrams
19 end
20 end

In line 12 we assign the actual telegram length to the variable n. Afterwards we
calculate the checksum of the telegram by passing the telegram content as a
Lua string to the function chksum. And here lurks the problem!
The function chksum internally also uses a variable n to summarize the sever-
al data bytes. But from the Lua interpreters point of view n ALREADY exists
(declared by the assignment of the telegram length). Therefore n is first set to
0, then summed up with the telegram bytes.
When querying the variable n in line 16 we don’t get the telegram length but
the sum of the telegram bytes! That’s not exactly what we want - isn’t it?
You can - of course - just rename the n in the chksum function. However in
huge templates this maybe means a lot of work and will not be as easy as ori-
ginally thought.
A more simple solution is: Declare every variable used only in a function as ’lo-
cal’. The appropriate Lua keyword is local. Applied to our example the shown
modification of line 2 is completely sufficient:

1 function chksum (data)
2 local n = 0
3 for i =1 ,# data do
4 n = n + data : byte (i)
5 end
6 return n % 255
7 end

97

KAPITEL 13. THE PROTOCOL VIEW

The local variable n now only exists in the function chksum and hasn’t any re-
lation with the telegram length n in line 12.
But what about the variable i?
The counting (or control) variables within a for loop are local in general. They
exists and are ’visible’ only in the loop body.

You see: It is always a good idea to declare all variable as local in the first
place. In case of a need for a global accessible variable we suggest to add a
prefix to its name, i.e. g_n (global n).

Gain more information about the current data event
The arguments passed to the split should be completely sufficient in most
cases. Nevertheless there are situations when you may need additional infor-
mation for a correct telegram extraction. Such like the data direction (and not
only the alternation state), the time stamp (and not only the distance).
Because every new parameter perhaps breaks the compatibility with older tem-
plates, the split function therefore supports access to these information with
the event module. The module is described in the module section. Here just a
simple example how you can determine the receiving source or direction of the
current data event. The example presumes a protocol with two different EOS
characters depending on the direction. All telegrams (and therefore data) re-
ceived at port A (CH1) use a CR as a EOS, the telegrams from port B (CH2)
were finished with a LF.

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 local eos = 13
3 i f event . d i r () == 2 then eos = 10 end
4 i f # s t r == 1 then return STARTED end
5 i f data == eos then return COMPLETED end
6 return MODIFIED
7 end

Split conclusion
The split function provides an adaption for almost all kinds of telegrams. Alt-
hough the split code consists of a few lines, it became clear, that a little know-
ledge about Lua is necessary when writing your own templates. See chapter
17.1 for a complete introduction into this amazing script language.

Splitting the data stream in single telegrams was the first thing. In the next
section you will learn how to format a telegram in your very own way.

13.3.2 Individual displaying of the datagrams
All the formating is done in a single out function. The function is always called
when a telegram is drawn in the telegram window. This provides a greater
performance because only the code for visible telegrams is executed.

1 function out ()
2 −− your fo rmat ing i n s t r u c t i o n s
3 end

The principle of the new output mechanism based on a set of individual rectan-
gular boxes in a row, whereby each row represent a single telegram.
Every box contains a caption line and a text specified by the user. Foreground

98

13.3. TEMPLATE LANGUAGE SYNTAX

and background color are free definable too. The caption and the text are Lua
strings and therefore can be the result of any operation with the data in the
relating telegram. The same applies for the colors. For instance:
The following picture shows a single Modbus RTU telegram realized with the
new mechanism. The various elements of the telegram like the address, func-
tion number, etc. are shown as individual boxes. The last box displays the vali-
dated CRC16 checksum, here green for a correct value.

The size (width) of a box is calculated from its content and every new box is
attached automatically on the right border of the previous box. This means:
the box positions in the row depend on the order of their calls inside the Lua
out() function. The first call of a box function displays a box leftmost, the
second shows a box right to the first and so on...
A simple box will be defined like this:

Time
0.137345

A simple box

1 function out ()
2 local te legram = telegrams . t h i s ()
3 box . t e x t { cap t ion ="Time " , t e x t =telegram : t ime () }
4 end

Please note! We don’t show the split code here and focus on the output functi-
on. Later we will discuss the box model with an example, including a functional
split method.
The code above will create the simple box as shown on the left. The caption
or headline text is ’Time’ (because we want to display the time stamp of the
telegram), the content is the result of the telegram:time() call which we
will explain in the next section.

The box will use black for the text and the outline and white as the background
color as long as no color is specified.
Let us now extend the output with the data in the telegram.

1 function out ()
2 local te legram = telegrams . t h i s ()
3 box . t e x t { cap t ion ="Time " , t e x t =telegram : t ime () }
4 box . t e x t { cap t ion =" Data (hex) " , t e x t =telegram : dump { } }
5 end

For this we add a second box in line 4. Instead of iterating through all data and
build the ’text’ by ourself, the telegram luckily offers a much simpler way.
The telegram function dump returns any desired section of its data as a hex
data (dump) string. By default, without parameters, the full data sequence is
used.
One word on the curly brackets of the dump call. Like the box.text they indi-
cate that the function expects named parameters.

Time
2.339189

Data (hex)
03a 030 032 030 032 043 034 00d 00a

Time
2.351468

Data (hex)
03a 030 032 030 032 030 046 031 035 036 041 034 032 037 044 00d 00a

99

KAPITEL 13. THE PROTOCOL VIEW

The box with the hex data appears behind the time box because it was called
AFTER the time relating box. All data is shown as a 3 digit hex value per default
(remember that the MSB-Analyzer supports 9 bit data values).
dump is one of the mostly used functions, just because it give you a first glimpse
into the telegram without pondering about the size or content.

Telegram data access
As mentioned above: The out() function is called for every telegram (line) be
displayed in the ProtocolView window. For instance: If the window shows the
first ten telegrams, out() is called ten times, starting with the very first recor-
ded telegram as created by the split() code and ending with the tenth.
When you scroll through the record and the window displays a section some-
where in between, lets say the telegrams from 1201 to 1217, then the out()
function is called for the telegram 1201, 1202 until it reached number 1217.
The telegram relating to the actually handled line is accessible via the telegrams
module with:
loca l te legram = telegrams . t h i s ()

For instance: A box like the following
loca l te legram = telegrams . t h i s ()
box . t e x t { cap t ion ="Number " , t e x t =telegram : number () }

will display the telegram number of the currently in the function out processed
telegram. But the telegrams module offers not only access to the actual tele-
gram.
Imagine the displaying of the telegram structure depends on information of pre-
vious telegrams. Or you have to know the elapsed time since receiving the prior
telegram, to decide if the actual telegram is a request or a response2.

The telegrams module gives you random access to ALL telegrams, from the
very first one until that one which is currently handled in the out() function3.
You can simply indexing any desired telegram with:
loca l te legram = telegrams . a t (index)

The parameter index addresses the telegram in two different ways.
A positive index (absolute addressing) gives you the telegram of the passed
index (or number). An index of 1 returns the first recorded telegram, an index
of 100 the hundredth one. Indexing a not existing telegram will give you a clas-
sical Lua nil result.

By far more interesting are ’negative’ indexes. Negative indexes stand for ’rela-
tive addressing’ and are counted backwards (from the current telegram in the
out function.
So means an index of -1 the actual telegram, and telegrams.this() is just
an alias for it. An index of -2 accesses the prior telegram. And also here exists
an alias: telegrams.prev(). Persons with Lua experience will surely not be
surprised by this as Lua use negative indexes in several string functions too.
The following code demonstrates how you can calculate the response time bet-
ween the actual and previous telegram:

2The Modbus RTU template makes use of this.
3You are not longer limited to the current and previous telegram as in former program versions.

100

13.3. TEMPLATE LANGUAGE SYNTAX

1 function out ()
2 local t c u r r = telegrams . t h i s ()
3 local t p rev = telegrams . prev ()
4 i f not t p rev then
5 tp rev = t c u r r
6 end
7 local dt = t c u r r : t ime () − t p rev : t ime ()
8 end

Since telegrams.this() or telegrams.at(-1) always returns a valid te-
legram, this doesn’t happen when one query the precursor of the very first
telegram. Without the precaution in line 4 tprev will become nil when scrol-
ling to the top. And nil means a lot of white emptiness in the telegram window.

In most cases using the telegrams.this() is sufficient. But the world of
protocols is not always easy and sometimes a bus device reaction depends on
an earlier received telegram type. If you like to mirror such a behavior in the
telegram window, you have to iterate through the past telegrams.
The access time of telegrams.at(index) is linear, nevertheless to iterate
through an undefined amount of telegrams means literally nothing good. There
is always a risk for endless loops which the Lua interpreter punishes with an
’Overrun of allowed executions’. To avoid it, limit the iteration to an responsible
number.

We have spoken a lot about telegram accessing. Now it’s time to look after the
resulting object - the returned type telegram itself.
The telegram type represents a single telegram as it is returned from a
telegrams module function. It’s like an container (or object) and covers all
telegram relevant information like the telegram time, the size (count of bytes or
data), the direction respectively source and so on.
In the example above tcurr and tprev are of the type telegram.
Don’t confuse the type telegram with a module. It’s rather like a number or
a string and only exists as a result of a preceding call of a telegrams mo-
dule function. You can assign the result (the type telegram) to a variable (as
shown above) or process it directly. Therefore the following lines provide the
same outcome. At first an approach without any intermediate step.

1 box . t e x t { cap t ion ="Number " , t e x t =telegrams . t h i s () : number () }
2 box . t e x t { cap t ion ="Time " , t e x t =telegrams . t h i s () : t ime () }
3 box . t e x t { cap t ion =" Length " , t e x t =telegrams . t h i s () : s i ze () }

That’s quite feasible, but leads to three identical and therefore unnecessary
calls of telegrams.this(). A better way to achieve this is:

1 loca l tg = telegrams . t h i s ()
2 box . t e x t { cap t ion ="Number " , t e x t = tg : number () }
3 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () }
4 box . t e x t { cap t ion =" Length " , t e x t = tg : s ize () }

Differences between . and : in Lua
You may have noticed that the examples above contain a lot of dots ’.’ and
colons ’:’. We havn’t explain it yet and you may still ask yourself what’s the dif-
ference in using a dot or a colon.

101

KAPITEL 13. THE PROTOCOL VIEW

The dot in telegrams.this() accesses the function this of the telegrams
module. A module is - simply spoken - organized as a table and the function
this is one of several table entries. The dot here refers to the this entry in
the telegrams table (or module). For this you can regard a module also as a
collection of functions.

But what about the tg:number()? It seems like the same kind of expression,
namely to call the function number() of the tg ’object’.
I say ’object’ deliberately! tg is a telegram variable or telegram object but it
ISN’T a module. By using a colon ’:’ Lua is instructed to access the function
(passed after the colon) which belongs to a specific variable/object (named be-
fore the colon). tg:number() therefore returns the number of the associated
telegram tg.

1 loca l tg = telegrams . t h i s ()
2 −− the number o f the cu r ren t te legram
3 tg : number ()
4 tg = telegrams . prev ()
5 −− now i t ’ s the number o f the prev ious telegram
6 tg : number ()

In the example above tg was first initiate with the current telegram (line 1), than
asked for its number (line 3). Afterwards we assigned tg to the previous tele-
gram. tg is now identical with the previous telegram. Asking its number again
returns a different number, namely the number of the previous one.

The following rule may serve as a little mnemonic:

Use a colon ’:’ every time you can say: �Variable, please do this for me�

Examine a telegram content
As said before: You can request several telegram information by calling the
relating function. They are all listed in section 13.8.7. One of this functions I
consider particular important because it will give you a quick view of the te-
legram data when you struggle with unknown content. The functions name is
dump{} and you learned about it earlier in this chapter.
dump returns the content of the associated telegram as a Lua string, listing all
data bytes as hexadecimal or decimal values. A dump call accepts the following
named parameters, here with their default settings:

te legram : dump{ f i r s t =1 , l a s t =−1, sep = ’ ’ , base=16 , width =3 , max=s ize / 2 }

Without any given parameter, dump returns the whole content (first=1, last=-1)
as 3-digit (width=3) hex values (base=16), separated by a space (sep=’ ’).
The parameter max limits the maximal count of shown bytes and outputs only
the first and last half n bytes, assigned to max.
Let’s assume a telegram with the byte sequence:

3A 30 32 30 32 30 46 31 35 36 41 34 32 37 44 0D 0A

And a simple out() function:

1 function out ()
2 local tg = telegrams . t h i s ()

102

13.3. TEMPLATE LANGUAGE SYNTAX

3 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () }
4 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump { } }
5 end

This will give you an output like this:

Time
2.351468

Data (hex)
03A 030 032 030 032 030 046 031 035 036 041 034 032 037 044 00D 00A

The argument base let you specify the number base. Default is hexadecimal
(base=16), but you can also choose a decimal output with base=10.

4 box . t e x t { cap t ion =" Data (dec) " , t e x t = tg : dump{ base=10 } }

Time
2.351468

Data (dec)
058 048 050 048 050 048 070 049 053 054 065 052 050 055 068 013 010

Next we will limit the hex values to two digits, since the telegram contains only
8-bit data.

4 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ width=2 } }

Time
2.351468

Data (hex)
3A 30 32 30 32 30 46 31 35 36 41 34 32 37 44 0D 0A

Ok, that was easy. Now imagine you want do display the last two bytes (the
CRLF) in an individual End-Of-String box. dump offers you the two position
parameter first and last to select any range of the content. You can pass the
byte position as an absolute value, i.e. first=1 means starting with the first byte
of the telegram. Or you count backwards with negative positions.

4 function out ()
5 local tg = telegrams . t h i s ()
6 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () }
7 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ f i r s t =1 , l a s t =−3,

width=2 } }
8 box . t e x t { cap t ion ="EOS" , t e x t = tg : dump{ f i r s t =−2, l a s t =−1, width=2 }

}
9 end

The last byte is indexed as -1. To select the last two bytes, we indicate a range
of first=-2 and last=-1. Accordingly we stop the dump of the former bytes at
position -3 which means the byte before the CR. This is what we get:

Time
2.351468

Data (hex)
3A 30 32 30 32 30 46 31 35 36 41 34 32 37 44

EOS
0D 0A

As you can see: Using negative indexes is a very comfortable way to avoid
querying the length of the telegram for absolute positioning.

The parameter sep is easy to understand. It just replaces the space or blank
between the values with any other single character/string. And - of course - you
can also remove the separator completely with:

4 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ width =2 , sep = ’ ’ } }

Time
2.351468

Data (hex)
3A30323032304631353641343237440D0A

The ProtocolView handles telegrams without limit in size. Nevertheless it is
sometimes annoying to scroll horizontally through a lot of data output by a

103

KAPITEL 13. THE PROTOCOL VIEW

dump{} call. Here comes the last parameter max into play. max specifies the
maximum count of displayed data/bytes, one half at the beginning, the other
half at the end. The remaining data in between were shown as byte count
surrounded by ellipsis points. For instance:

4 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ width =2 , max=4 } }

gives you:

Data (hex)
3A 30 ...[13]... 0D 0A

Create your own template step by step
For the next steps we recommend you to load or double-click the project file
Tutorial.msbprj in the Examples\ProtocolView directory. The exam-

Tutorial
Tutorial.msbprj

ple also works without a connected analyzer and will show you every ongoing
step in the further template adaption at first hand.

The sample lesson contains a record of a simple protocol where each telegram
starts with a colon ’:’ and ends with CRLF as an End-Of-Frame delimiter. You
may already have discovered it in the pictured EOS box above (the data 013
010).
For this we can use the split function from the last section. Here is a remain-
der:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
4 return MODIFIED
5 end

The protocol also specifies the device address of the receiver, a function num-
ber, some data and a simple checksum. If it reminds you a little bit of the Mod-
bus ASCII you are right.
The project template is read-only, so you have to copy the template as a new
one by clicking the + button (open the editor first) and input a script name, for
example ’MyTutorial’ or something else. Otherwise you cannot edit it.

At first we will add some color in our current telegram display for we want to
see the direction or source of every telegram. As usual we will show telegrams
received at Port A (CH1) in red and the data at Port B (CH2) in blue.
We already mentioned that a box has a foreground and background color pa-
rameter. Colors are passed as a RGB hex value like 0xAABBCC. The first byte
(AA) specifies the red part (between 0...255), the second byte (here BB) the
green part and the lowest byte (here CC) the blue part. For instance: black is
0x000000, white is 0xFFFFFF.
We will display all telegrams received at Port A with a red text on a light red
background. And the data on Port B as a blue text on a lightblue background.
Ok, here we go:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
4 return MODIFIED

104

13.3. TEMPLATE LANGUAGE SYNTAX

5 end
6
7 function out ()
8 −− te legram co lo rs
9 local t e x t c o l o r s = { 0xFF0000 , 0x0000FF }

10 local backcolors = { 0xFFEEDD, 0xDDEEFF }
11
12 −− access the cu r ren t te legram
13 local tg = telegrams . t h i s ()
14
15 −− s e l e c t the t e x t and background co lo r depending on the data

source
16 local f c = t e x t c o l o r s [tg : d i r ()]
17 local bc = backcolors [tg : d i r ()]
18
19 −− d i sp lay t ime
20 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () , fg=fc , bg=bc }
21
22 −− d i sp lay a l l data as hex
23 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump { } , fg=fc , bg=bc }
24 end

Line 9 defines a Lua table (or array) with two items for the text color, line 10 the
same for the background color.
In line 13 we query the telegram to display and assign it to the local telegram
variable tg.
The function tg:dir() returns the direction of the current telegram (1 or 2)
and the result is used to select the relating text and background from the two
color tables (line 16 and 17).
At last we just pass the two color values to all box calls (the box parameter fg
specifies the foreground, bg the background colour) and - voila - after pressing
F5 to execute the modification, the telegrams appear in two different colors.

Time
2.339189

Data (hex)
03A 030 032 030 032 043 034 00D 00A

Time
2.351468

Data (hex)
03A 030 032 030 032 030 046 031 035 036 041 034 032 037 044 00D 00A

The modifications will be stored automatically every time you execute the tem-
plate with F5.
Next we will highlight the starting colon ’:’ (hex 3A) and the End-Of-Frame se-
quence (CRLF). This will help us to see any variation in the telegram itself
caused by a telegram error.

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
4 return MODIFIED
5 end

6 function out ()
7 −− te legram co lo rs
8 local t e x t c o l o r s = {0xFF0000 ,0 x0000FF }
9 local backcolors = {0xFFEEDD,0xDDEEFF}

10
11 −− access the cu r ren t te legram
12 local tg = telegrams . t h i s ()
13

105

KAPITEL 13. THE PROTOCOL VIEW

14 −− s e l e c t the t e x t and background co lo r depending on the data
source

15 local f c = t e x t c o l o r s [tg : d i r ()]
16 local bc = backcolors [tg : d i r ()]
17
18 −− d i sp lay t ime
19 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () , fg=fc , bg=bc }
20
21 −− s t a r t colon
22 box . t e x t { cap t ion ="SOF" , t e x t = s t r i n g . char (tg : data (1)) , bg=fc , fg=bc }
23
24 −− d i sp lay a l l data as hex
25 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ f i r s t =2 , l a s t =−3}, fg=fc ,

bg=bc }
26
27 −− end of frame CRLF
28 box . t e x t { cap t ion ="EOF" , t e x t = tg : dump{ f i r s t =−2}, fg=bc , bg= f c }
29 end

Line 22 calls a normal text box for the colon display. The caption or headline
is SOF (Start Of Frame). The text parameter is the first byte in the telegram
queried with tg:data(1). Instead of showing the value of the colon (hex 3A)
we output the value as a character with string.char(tg:data(1))4.
The end of frame sequence don’t need any transforming. We simply show the
CRLF as a separate box with an inverse coloring (line 28).
At last we have to adapt the position and size of the hex display in line 25. The
remaining data starts now at position 2 (the first byte is the colon), and ends
with the last byte before the CRLF, the third last byte or -3. The result is shown
in the following picture:

Time
2.339189

SOF
:

Data (hex)
030 032 030 032 043 034

EOS
00d 00a

Time
2.351468

SOF
:

Data (hex)
030 032 030 032 030 046 031 035 036 041 034 032 037 044

EOS
00d 00a

The data is displayed with always three digits. This is the default since the MSB-
Analyzer supports 9 bit data words.
In our example with don’t have 9 bit data, so we can reduce the data represen-
tation to two digits. With the parameter width we can pass another count of
digits to the telegram dump function. Here the relating line 25:

25 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump{ f i r s t =2 , l a s t =−3,width =2} , fg=
fc , bg=bc }

and the result on the example of the ’red’ telegram:

Time
2.339189

SOF
:

Data (hex)
30 32 30 32 43 34

EOS
00d 00a

Handle a base16 encoding
And now let us introduce some new things which go far beyond the abilities of
the former protocol view.
Our example protocol simulates some kind of a bus communication. The bus
consists of a sender and two devices which continuously read the temperature,
air pressure and humidity.

4The string module is part of the Lua language.

106

13.3. TEMPLATE LANGUAGE SYNTAX

The sender (or bus master) queries each device randomly for one of these in-
formation. The value in the answer is coded as a floating point number. Except
for the starting colon and the ending CRLF all data bytes are sent as two ASCII
characters (hex ASCII or base16 format). For instance: The byte hex 0x5B is
encoded as two characters: 0x35 and 0x42 (0x35 = ’5’, 0x42 = ’B’ in ASCII).
Last but not least a simple checksum provides the integrity of the telegrams. A
single telegram looks like:

Start Address Function Data Checksum End

: 2 chars 2 chars 0 or 8 chars 2 chars CRLF

Please note: Queries have an empty data field!

In a first step we will convert the actual data from the base16 encoding back into
its origin binary sequence. This will ease the later handling of the information
packed in the telegram itself.
You can write a little Lua function to do this job, but the ProtocolView already
can offer you a helpful base16 module to handle such a coding in a flexible
way. The module is described in detail on page 206.
To get the representation of a base16 coded string, just pass the according
string to base16.decode(string) like this:

1 loca l tg = telegrams . t h i s ()
2 loca l bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))

tg:string() returns all bytes of the telegram as a Lua string.
The colon start character ’:’ and the end-of-string CRLF are not part of the
encoding. Therefore we must only decode the substring from the second byte
(position 2) to the third-last (position -3). To extract a certain sequence from a
string is a frequent application and the Lua string module offers an appropriate
function: sub(first,last).
Calling the sub function directly from the string variable (or object) via:
tg:string():sub(2,-3) is all we have to do.
Please note! Since Lua strings can only consist of normal bytes, any 9-bit infor-
mation is discarded. If you have to deal with 9-bit data, then you must access
the single data with the telegram function telegram:data(index).

The result is assigned to the local variable bindata which we will use for ex-
tracting all further information. The content of the binary data representation is
thus:

Address Function Data Checksum

1 byte 1 byte 0 or 4 bytes 1 byte

You can query any byte of a Lua string with string:byte(index). The func-
tion works similar to telegram:data(index) and simply returns the byte
value on the given string position (index). To display the address and function
is easy to realize:

1 box . t e x t { cap t ion =" Address " , t e x t =b indata : byte (1) , fg=fc , bg=bc }
2 box . t e x t { cap t ion =" Function " , t e x t =b indata : byte (2) , fg=fc , bg=bc }

107

KAPITEL 13. THE PROTOCOL VIEW

The checksum is the last byte in the binary sequence and it would be nice to
see the checksum in a hexadecimal notation. To do this, we pass the value to
the string belonging format function.

box . t e x t { cap t ion ="Chksum" ,
t e x t = s t r i n g . format ("%02X" , b indata : byte (−1)) , fg=fc , bg=bc }

As mentioned above: The example protocol distinguishes between a request
and a response. Only response telegrams contain an additional data field, en-
coded as a 4-byte floating point number.
Response telegrams are characterized by a length of totally 17 bytes (the ori-
ginal telegram with base16 encoding), or by a binary sequence of 7 bytes (ad-
dress=1 byte, function=1 byte, data=4 bytes, checksum=1 byte). To distinguish
it from a request, querying the size of the telegram or bindata length would be
enough. For instance:

1 i f tg : s i ze () == 17 then . . . end
2 i f #bindata == 7 then . . . end

It doesn’t matter which one you are choosing. But since we refer to the binary
data later in the response block, we use the second form. Here we go:

1 function out ()
2 −− te legram co lo rs
3 local t e x t c o l o r s = { 0xFF0000 , 0x0000FF }
4 local backcolors = { 0xFFEEDD, 0xDDEEFF }
5
6 −− access the cu r ren t te legram
7 local tg = telegrams . t h i s ()
8 local bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))
9

10 −− s e l e c t the t e x t and background co lo r depending on the data
source

11 local f c = t e x t c o l o r s [tg : d i r ()]
12 local bc = backcolors [tg : d i r ()]
13
14 −− d i sp lay t ime
15 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () , fg=fc , bg=bc }
16
17 −− s t a r t colon
18 box . t e x t { cap t ion ="SOF" , t e x t = s t r i n g . char (tg : data (1)) , bg=fc ,

fg=bc }
19
20 −− the address f i e l d
21 box . t e x t { cap t ion =" Address " , t e x t =b indata : byte (1) , fg=fc , bg=bc }

22 −− the f u n c t i o n number f i e l d
23 box . t e x t { cap t ion =" Function " , t e x t =b indata : byte (2) , fg=fc , bg=bc }
24
25 −− i s i t a response?
26 i f #bindata >= 7 then
27
28 −− d i sp lay the response data as hex
29 box . t e x t { cap t ion =" Data (hex) " ,
30 t e x t = tg : dump{ f i r s t =3 , l a s t =6 , width =2} ,
31 fg=fc , bg=bc }
32
33 end
34
35 −− the checksum byte i s always the l a s t byte i n b indata
36 box . t e x t { cap t ion ="Chksum" ,

108

13.3. TEMPLATE LANGUAGE SYNTAX

37 t e x t = s t r i n g . format ("%02X" , b indata : byte (−1)) ,
38 fg=fc , bg=bc }
39
40 −− end of frame CRLF
41 box . t e x t { cap t ion ="EOF" , t e x t = tg : dump{ f i r s t =−2, width=2 } , fg=bc ,

bg= f c }
42
43 end

Line 26 checks if the telegram is a response. If so (the bindata sequence
contains at least 7 bytes), an additional data block is appended. An according
telegram would look like:

Time
2.339189

SOF
:

Address
2

Function
2

Checksum
C4

EOS
0D 0A

Time
2.351468

SOF
:

Address
2

Function
2

Data (hex)
0F 15 6A 42

Checksum
7D

EOS
0D 0A

Displaying the function as a number may be sufficient in most cases. But
wouldn’t it be not more convenient to replace the function number right with
a function call description, so you can easily understand the meaning of the
telegram? In our example protocol the functions are numerated as:

1 Temperature
2 Moisture
3 Pressure

A Lua function to return a text string relating to the function number may look
like5:

1 function GetFunctionName (number)
2 local names = { " Moisture " , " Humidi ty " , " Pressure " }
3 return names [number]
4 end

Line 2 creates a Lua table (or array) with the three function descriptions. Becau-
se names is declared as local no other part of your code can access the table
except for the code within GetFunctionName. This avoids conflicts when you
have further names variables in other functions and therefore this should be
always the recommended procedure!
Lua indicates tables starting with 1. Line 3 returns the table entry according to
the given number parameter.

Lua allows you to put a function definition into another function. The functi-
on above can reside inside of out() but you can also place it somethere
else. As a rule use an inside definition only in case of small functions (like
the GetFunctionName) and write your additional functions outside of out()
otherwise.

1 function out ()
2 function i n s i d e ()
3 −− do something
4 end
5 −− c a l l the f u n c t i o n

5We assume that the number parameter is always in a valid range.

109

KAPITEL 13. THE PROTOCOL VIEW

6 i n s i d e ()
7 end

Ok, let us put the pieces together. The listing below shows the significant mo-
difications. We add the function GetFunctionName() just inside of out and call
the function with passing the function number in line 24.

1 function out ()
2
3 function GetFunctionName (number)
4 loca l names = { " Moisture " , " Humidi ty " , " Pressure " }
5 return names [number]
6 end
7
8 −− access the cu r ren t te legram
9 local tg = telegrams . t h i s ()

10 local bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))
11 . . .

23 −− the f u n c t i o n number f i e l d
24 box . t e x t { cap t ion =" Function " , t e x t =GetFunctionName (b indata : byte (2)) ,

fg=fc , bg=bc }
25 . . .
26 end

And that’s the result for the first two telegrams:

Time
2.339189

SOF
:

Address
2

Function
Moisture

Checksum
C4

EOS
0D 0A

Time
2.351468

SOF
:

Address
2

Function
Moisture

Data (hex)
0F 15 6A 42

Checksum
7D

EOS
0D 0A

The displaying of the function meaning is just an example to show you how to
convert several parts of a telegram in a more human readable information. You
can just as easy replace the address with a certain device name, but we are
now going to focus our attention to the data itself.

In the protocol specification we said before, that the devices respond with a
floating point value according to the received function number. These are va-
lues for the temperature, the moisture or pressure.
The floating-point format consist of four bytes in the bindata string (or eight
in the original telegram sequence). The picture above shows the four response
bytes in the Data (hex) box.
Our next task is to convert a sequence of bytes into a specific number.

Convert byte sequences into numbers
In dealing with protocols you will often have to transform a byte sequence to a
certain number; and there are various forms of numbers: Integer values can be
transmitted in two or four bytes, floating point numbers sent as four or eight by-
tes (double precision). And: Even the order of the transfered bytes matters. So-
me protocols put the most significant byte first on the line (Big Endian), others
the lowest (Low Endian).
Luckily the Lua interpreter comes with a mighty function to handle all the diffe-
rent types.

110

13.3. TEMPLATE LANGUAGE SYNTAX

The function string.unpack expects two mandatory parameters: The byte
sequence as a Lua string, and how to transform it as a second format string.
An optional third parameter specifies the position within the string, when the
conversion doesn’t have to start with the first character. The function unpack
replaces the older bunpack and is part of the Lua string module since the
analyzer software uses Lua 5.3.
val1 , . . . , pos = s t r i n g . unpack (format , sequence , p o s i t i o n)

The function returns at least two values. The first value(s) are always the re-
sult of the transformation regarding the format parameter. This parameter also
specifies how many values are returned in total.
The last result indicates the string position where the next conversion should
take place.
Before we go back to our tutorial, here are some examples which may give you
an idea how the string.unpack works.

1 seq = " \248\036\001\000\154\153\045\065"
2 i , pos = s t r i n g . unpack ("< i " , seq)
3 f , pos = s t r i n g . unpack ("< f " , seq , pos)

Line 1 creates a byte sequence coded as single values in decimal notation. For
instance: A "\255" gives you a single hex FF byte, a "\104\101\108\108\111"
is the same as the string "hello". The decimal notation allows us to form any
sequence of bytes which we otherwise couldn’t input with an usual keyboard.

The sequence above isn’t been chosen by chance.
The first four bytes represent the 32-bit integer value 75000 with the least signi-
ficant byte first (Little-Endian). The second four bytes are the binary imprint of
the number 10.85, also in Litte-Endian format (LE). The following table shows
the string in hexadecimal notation:

LE Integer 75000 LE Float 10.85

F8 24 01 00 9A 99 2D 41

1 Byte position 8

Now let’s see how the string.unpack can provide us with the real numbers
behind this sequence. We start with the 32-bit integer:

2 i , pos = s t r i n g . unpack ("< i " , seq)

The first argument of the call string.unpack is always the format string. It
specifies the kind of data, which we expect at the given (optional) position. Sin-
ce the default position is equal to the string start, we can leave it out.
The second parameter is the byte sequence we want to transform. The magic
behind the string.unpack resides in the format string. One certain letter is
assigned to one data type. A ’<’ or ’>’ in front of them defines the byte order. A
’<’ stands for little endian, ’>’ means a big endian interpretation.
There are a lot of different types understandable by the format parameter. They
are listed in detail in the Lua 5.3 online documentation here:
http://www.lua.org/manual/5.3/ or in the according section 18.2.3.

In our example above the format string "<i" indicates a 32 bit ’signed inte-
ger’ in little endian. string.unpack returns two values: The decoded integer

111

http://www.lua.org/manual/5.3/manual.html#6.4.2

KAPITEL 13. THE PROTOCOL VIEW

(the result is 75000) and the new position in the given byte sequence after the
decoding took place. Here pos is 5 because the next value (the floating point
number) starts after 4 bytes are consumed by the "<i" specification.
Remember: "<i" stands for a 32-bit signed integer which means 4 bytes in
the passed sequence.

The conversion in line 3 starts at the position returned in the former call. Since
the expected value is a floating-point number in little-endian order, we passed
a "<f" as format directive.

3 f , pos = s t r i n g . unpack ("< f " , seq , pos)

The outcome is again a pair of values. pos points to the ninth byte (the byte
following the floating point sequence) and f is the floating point value 10.85.
In our example the two data (long integer and float) directly following each
other. In such a case you can extract the data in one go and avoid passing the
position parameter again and again.
And if we don’t have a need for the pos result, we can simply omit it. It is the
last value in the result and Lua doesn’t complain when you skip it.

i , f = s t r i n g . unpack (seq , "< i < f ")

Fantastic - isn’t it?
And since the ProtocolView allows you, to ’play around’ with the format para-
meter it becomes easy to check whether a certain sequence exists in a little
or big endian order, or if it contains an integer or floating point number. This is
particular in unknown or undocumented protocols a great advantage.

Ok, after this little excursion into data conversion let’s return to our tutorial. We
already transformed the hex data of the telegram in a binary representation.
Remember, that a response telegram contains the requested value (passed as
the function number) as a floating point number. Here the response telegram
structure again:

Address Function Float Number Checksum

1 byte 1 byte 4 bytes 1 byte

The following lines summarize all modifications to the out() function so far:

1 function out ()
2
3 function GetFunctionName (number)
4 loca l names = { " Moisture " , " Humidi ty " , " Pressure " }
5 return names [number]
6 end
7
8 −− te legram co lo rs
9 local t e x t c o l o r s = { 0xFF0000 , 0x0000FF }

10 local backcolors = { 0xFFEEDD, 0xDDEEFF }

11 −− access the cu r ren t te legram
12 local tg = telegrams . t h i s ()
13 local bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))
14
15 −− s e l e c t the t e x t and background co lo r depending on the data

source

112

13.3. TEMPLATE LANGUAGE SYNTAX

16 local f c = t e x t c o l o r s [tg : d i r ()]
17 local bc = backcolors [tg : d i r ()]
18
19 −− d i sp lay t ime
20 box . t e x t { cap t ion ="Time " , t e x t = tg : t ime () , fg=fc , bg=bc }
21
22 −− s t a r t colon
23 box . t e x t { cap t ion ="SOF" , t e x t = s t r i n g . char (tg : data (1)) , bg=fc ,

fg=bc }
24
25 −− the device address
26 box . t e x t { cap t ion =" Address " , t e x t =b indata : byte (1) , fg=fc , bg=bc }
27
28 −− the f u n c t i o n number
29 box . t e x t { cap t ion =" Function " , t e x t =GetFunctionName (b indata : byte (2)) ,
30 fg=fc , bg=bc }
31
32 i f #bindata >= 7 then
33 −− i t i s a response
34 loca l value = s t r i n g . unpack ("< f " , b indata , 3)
35 box . t e x t { cap t ion =" Value " , t e x t =value) , fg=fgColor , bg=bgColor

}
36 end
37
38 −− the checksum byte i s always the l a s t byte i n b indata
39 box . t e x t { cap t ion ="Chksum" ,
40 t e x t = s t r i n g . format ("%02X" , b indata : byte (−1)) ,
41 fg=fc , bg=bc }
42
43 −− end of frame CRLF
44 box . t e x t { cap t ion ="EOF" , t e x t = tg : dump{ f i r s t =−2 } , fg=bc , bg= f c }
45 end

The according line 34 should be readily comprehensible. In case of a response
telegram we extract the floating point number and display it in an additional text
box as value.
The checksum validation isn’t yet part of our telegram display. We will look into
it later. You may also notice that we ’dump’ the EOS with a relative (negative)
index. Thus it’s easy to access the EOS bytes without passing the telegram
length. The output for the very first two telegrams is:

Time
2.339189

SOF
:

Address
2

Function
Moisture

Checksum
C4

EOS
0D 0A

Time
2.351468

SOF
:

Address
2

Function
Moisture

Value
58.520565032959

Checksum
7D

EOS
0D 0A

Compared with the first steps it’s a lot more understandable, isn’t it?
But we have not yet reached the finish line. There is still place for some impro-
vements. For instance: The floating point values are shown with a lot too much
digits. And it would be nice to validate the checksum.
Lua comes with an internal string module which offers you, beside other
string operations like search, replace and regular expressions, a string format
function similar to the printf in C.

35 box . t e x t { cap t ion =" Value " , t e x t = s t r i n g . format ("%.2 f " , value) }

string.format understands a lot of types and options, for more information
please refer to one of the Lua online manuals as listened at the end of the
chapter. Here we use the format string "%.2f" which formats the given floating

113

KAPITEL 13. THE PROTOCOL VIEW

point value (’f’) with 2 fractional digits.
You can add an individual format string with the physical unit for each kind of
value as a little exercise. The solution is shown partially below:

1 function GetFunct ionValue (number , value)
2 local formats = { "%.2 f Deg" , "%.2 f %%", "%.2 fmBar " }
3 return s t r i n g . format (formats [number] , value)
4 end
5
6 i f #bindata >= 7 then
7 −− i t i s a response
8 local fnc = b indata : byte (2)
9

10 local value = s t r i n g . unpack (bindata , "< f " , 3)
11 box . t e x t { cap t ion =" Value " , t e x t =GetFunct ionValue (fnc , value) , fg=fc , bg=

bc }
12 end

The code should be self-explanatory maybe except for the "%.2f%%" in line 2.
The percent sign is used as a placeholder for the given value. If you like to use
it as part of the output string, you have to quote it with a leading percent sign
or simply spoken use two of them.

Checksum validation
Last but not least we will finish the introduction of the template mechanism with
a checksum validation. Our goal is to display valid checksums in green and
invalid ones in a warning orange.
The protocol checksum is calculated by add up all bytes starting with the ad-
dress and ending with the last data byte. The colon and the CRLF are not part
of it. Carries have to be discard.
The checksum validation function looks like:

1 function Checksum (data)
2 local sum = 0
3 for i =1 ,# data do sum = sum + data : byte (i) end
4 −− d iscard the c a r r i e s
5 return sum % 256
6 end

The checksum function is called with the byte sequence (string) we want to
summarize and returns the lower 8 bits of the sum.

1 loca l chksum = Checksum (tg : s t r i n g () : sub (2 , −5))

The colon isn’t part of the checksum as mentioned above. So we passed the
substring start position 2. Also the checksum itself (2 bytes) and the CRLF (al-
so 2 bytes) has to be excluded. Which means an ending substring position 4
bytes lesser as the telegram size or the fifth byte counted backwards.
Finally we compare the calculated and the read checksum and - depending on
the result - add a good or a bad checksum box.

1 loca l chksum = Checksum (tg : s t r i n g () : sub (2 , −5))
2
3 i f chksum == bindata : byte (−1) then
4 box . t e x t { cap t ion ="Checksum " , t e x t = s t r i n g . format ("%02X" , chksum) ,
5 fg =0xFFFFFF , bg=0x00cc00 }

114

13.4. FILTERING

6 else
7 box . t e x t { cap t ion ="CHKS ERR! " , t e x t = s t r i n g . format ("%02x " , chksum) ,
8 fg =0xcc0000 , bg=0 x f f f f 8 8 }
9 end

You will find the complete template in the examples\ProtocolView folder as
complete-sample.msbtml. The sample contains also one invalid checksum
in the third answer telegram to demonstrate the correctness of our checksum
validation.

Named parameters
A few additional words regarding the parameter passing. You may here noticed
that a lot function parameter follow the conversation:

parametername = value

This is not Lua typical but we decided that so called named parameters are
more convenient and even more understandable. And: you don’t have to worry
about the parameter order. For instance:

1 box . t e x t (" Func " , "Command" , 0xFFAAAA, 0x0000FF)

Without a look in the manual it’s hard to get the meaning - isn’t it? What’s the
caption, what’s the text color?
On the other hand the same code with named parameters:

1 box . t e x t { cap t ion ="Func " , t e x t ="Command" , fg =0xFFAAAA, bg=0x0000FF }

The meaning is obvious (although you have to remember that fg stands for
foreground color and bg means background color).
Please note: Named parameters are always included between an opening and
closing brace {...} because Lua sees the parameter as a table. Normally you
would have to write: function({...}) but the outer brackets are optional
here and you can forego them.

13.4 Filtering
Filtering of the data or telegrams is an often demanded feature. But how to filter
unknown types of telegrams? From the viewpoint of the program a predefined
list of filters doesn’t make many sense since every telegram has a very special
need of what you want to show (filter) and hide in the output.
For instance: You want to see only telegrams of bus participants with a certain
address or certain function. In this case the filter mechanism must be able to
extract and compare the address with the given filter parameter.
It is obviously that the filtering therefore has to be part of the template.

13.4.1 Show and hide (filter) complete telegrams
It’s now the appropriate time to introduce the last parameter in the split func-
tion. In case you don’t remember the call of the function. Here it is again:

1 function s p l i t (data , i nva l , a l t e r , s t r , f i l t e r)
2 −− you s p l i t code
3 return STATE
4 end

115

KAPITEL 13. THE PROTOCOL VIEW

The filter parameter is just a text string containing the current selected item of
the filter control in the toolbar. But with it you can pass any desired data (as
a string) to the split function. The real filtering has to be done in the split
function itself.
You may comment, that the filtering is surely better in the out function. But the
out function only displays the visible telegrams. It cannot remove (filter out) a
single telegram without creating a discrepancy between the visible and availa-
ble telegrams. I.e. you can hide all telegrams but nevertheless the count of
telegrams is unchanged and the scrollbars will tell you that by scrolling through
an empty list.
Nevertheless accessing the content (input) of the filter control is of use in a
different manner. We come back to this special case in the next section. Here
we concentrate on filtering complete telegrams in the way of hide/show only
certain ones.
As usual it is the best way to explain the filter mechanism with the aid of an
example. Load the tutorial project again and select the Tutorial-Complete tem-
plate. Copy the template with the [+] button so that you can modify it by yourself.

The tutorial record shows the communication with two devices. The first one
has the address 1, the second the address 2.
And now imagine you can simply list only the communication between the mas-
ter and the first device. Or showing the telegrams relating to a certain query,
for instance all requests and answers for the temperature.

To filter certain telegrams means to ’remove’ all of them you don’t want to see.
For this the split function can return the state REMOVED. First we will only
list the telegrams with the first device (address 1). To do this we have to sup-
press all telegrams to and from the second device. The address is coded as
two hex ASCII characters in the second and third byte of the telegram. Here -
for instance - the very first telegram as it is shown in the DataView:

3A 30 32 30 32 43 43 0D 0A :0202C4..

To detect a telegram with address 2 we just have to look for the string "02" on
the second position. In Lua formulated it is:

1 i f s t r : f i n d (" 0 2 ") == 2 then . . .

Add the line in our split function and return the state REMOVED when the
condition is true (see line 3 in the following code).

1 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (" 0 2 ") == 2 then return REMOVED end
4 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
5 return MODIFIED
6 end

Now hit the F5 key (or click the execution button in the toolbar) - voila - all re-
maining telegrams show only the communication with the first device.
When you replace the string "02" with "01" the display lists only the telegrams
of the second device.
Nevertheless it is bothering to change the template all the time when you just

116

13.4. FILTERING

want to look for telegrams with the other address. Here’s where the filter para-
meter comes into place.
The filter control in the toolbar passes any inputed text string to the split
function as the filter argument. With this it becomes easy to set the address of
the not wanted devices. We only have to replace the address string "02" in line
3 with the filter parameter as shown in the following code.

1 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
2 i f data == 58 then return STARTED end
3 i f s t r : f i n d (f i l t e r) == 2 then return REMOVED end
4 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
5 return MODIFIED
6 end

Without a given input or in case of an unfitting address the REMOVED condi-
tion is always ignored and all telegrams are displayed in the telegram list. But
as soon as the filter control text matches the address of the current telegram
at position 2, split returns a REMOVED and the telegrams with the given
address will be hide in the display.

You can check your code afterwards by input a 01 in the filter control and press
Enter. All telegrams relating to the first device should disappear. Then change
the string in the filter control to 02 and hit the Enter key again. The remaining
telegrams show the address 01.
Now let us extend our little example and implement a filtering for the three
function codes:

1 Temperature
2 Moisture
3 Pressure

The function number is transmitted in the 4th and 5th data byte of the telegram.
The user should be allowed to select a certain function in the filter control. Only
telegrams containing that function should be displayed in the telegram window.
For instance:
In case of an input function number 1 (temperature) all telegrams according to
the moisture and pressure have to be REMOVED.

1 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
2 i f data == 0x3A then return STARTED end
3 i f f i l t e r == "1 " then
4 i f s t r : sub (4 , 5) == "02" or s t r : sub (4 , 5) == "03" then
5 return REMOVED
6 end
7 e l s e i f f i l t e r == "2 " then
8 i f s t r : sub (4 , 5) == "01" or s t r : sub (4 , 5) == "03" then
9 return REMOVED

10 end
11 e l s e i f f i l t e r == "3 " then
12 i f s t r : sub (4 , 5) == "01" or s t r : sub (4 , 5) == "02" then
13 return REMOVED
14 end
15 end
16 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
17 return MODIFIED
18 end

117

KAPITEL 13. THE PROTOCOL VIEW

The code above filters all other telegrams except for that which was entered as
a number in the filter control. But sometimes it’s hard to remember the correct
function number. Especially when a more readable function name is provided
by the protocol.

In the next step we will improve the handling by adding predefined selection
strings in the filter control. We will introduce a special filters function to
you, which automatically fills the filter control with a specified list of entries.
The definition of that function is simple:

1 function f i l t e r s ()
2 return "Show a l l , Temperature , Moisture , Pressure "
3 end

The filters function must return a single text string whereas each item for
the filter control is separated by a comma. The first item appears at the top of
the selection list, the last at the bottom.
You can place the filters function at every point of the template script but
not within another function. We recommend to insert the function on the top of
the script.
As soon as a filters function is detected by the internal script engine it fills
the filter control with the items in the returning string. Here we get the items:
Show all, Temperature, Moisture and Pressure.

At least we change the REMOVED conditions in split and use the items
above instead of the simple function numbers. (You will find the complete tem-
plate as tutorial-complete-with-filtering.msbtml in the examples
folder).

With the changes in the template code below (see line 3, 7 and 11) the user is
able to select one kind of the telegrams in the filter control independent of some
function numbers. And since the filter mechanism is part of the template you
can provide every protocol template with an exactly matching filter handling.

1 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
2 i f data == 0x3A then return STARTED end
3 i f f i l t e r == " Temperature " then
4 i f s t r : sub (4 , 5) == "02" or s t r : sub (4 , 5) == "03" then
5 return REMOVED
6 end
7 e l s e i f f i l t e r == " Moisture " then
8 i f s t r : sub (4 , 5) == "01" or s t r : sub (4 , 5) == "03" then
9 return REMOVED

10 end
11 e l s e i f f i l t e r == " Pressure " then
12 i f s t r : sub (4 , 5) == "01" or s t r : sub (4 , 5) == "02" then
13 return REMOVED
14 end
15 end
16 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end
17 return MODIFIED
18 end

118

13.4. FILTERING

13.4.2 Choose between different telegram display formats
As mentioned above: It doesn’t make any sense to hide unwanted telegram
types in the out() function because this will not simply remove the specified
telegram. It will present you with an empty space instead.
But there are other applications which make it preferable to modify the dis-
play of the telegram depending on some user input. For example: You have
an embedded protocol and want to switch on/off the outer protocol layer. Or
something more trivial which lead us back to our example. You want to display
the pressure and temperature in a metric or Anglo-American measurement
systems, means: You want to display the pressure in psi or bar and the tem-
perature in ◦C or ◦F.
In the filter control you will let the user select one of the two available systems
of measurement. Here we go: We define two filter items to make the selection
clear from the beginning.

1 function f i l t e r s ()
2 return " Metr ic , Anglo−American "
3 end

The filter input is passed as a filter parameter to the out() function like it
already works with the split() function. In the out() function you can check
the input against different strings and use the result to apply a conversion func-
tion to the temperature or pressure.
The following code snippet may give you an idea how it works. All displayed va-
lues in the tutorial are handled in one function: GetFunctionValue(). This
function is called with two parameters, a number indicating the value type and
the value itself.
In line 4 we check the filter control input. A ’Metric’ selection doesn’t need any
calculation because the exchanged values are already in ◦C and mbar. The
new modifications are covered in the following else block at line 8.
First we change the unit formats (line 9) and add two fractional digits for the psi
values. Line 10 is pure Lua magic and shows once again how easy you can
solve problems which use a lot of code in other languages. Here our goal is to
have different conversion functions depending on the input variable (tempera-
ture, moisture or pressure).
Line 10 use a hash table (or associated array) with three anonymous functions.
Every function is called by the key 1, 2 or 3 and equal with the type tempera-
ture, moisture or pressure. In line 18,19 we simply call the right conversion by
passing the number parameter. Compare this with line 6 for a better understan-
ding.

1 function out (f i l t e r)
2 −− sk ip unchanged code here
3 function GetFunct ionValue (number , value)
4 i f f i l t e r == " Met r i c " then
5 local formats = { "%.2 fC " , "%.2 f %%", "%.2 fmBar " }
6 return s t r i n g . format (formats [number] , value)
7 else
8 −− convers ion f a c t o r f o r Temparature , Moisture and Pressure
9 local formats = { "%.2 fF " , "%.2 f %%", "%.2 f p s i " }

10 convs = {
11 −− f u n c t i o n to conver t c e l s i u s to f a h r e n h e i t
12 [1] = function (c) return c * 1.8 + 32 end ,
13 −− the mosi ture i s always i n percent
14 [2] = function (m) return m end ,

119

KAPITEL 13. THE PROTOCOL VIEW

15 −− f u n c t i o n to conver t mbar to ps i
16 [3] = function (p) return p * 0.01450377 end
17 }
18 return s t r i n g . format (formats [number] ,
19 convs [number] (value))
20 end
21 end

Just replace the GetFunctionValue() with this new version and add the
parameter filter in the out() function. With the already modified filters()
function the template now lets you toggle between an Anglo-American and
metric value output.

13.5 New filter mechanism
Until the published release of the beta 6.1.0 filtering certain telegrams out of
the received data stream has to be done in the split() function. But this ap-
proach has one major disadvantage:
You can only hide a telegram sequence (by returning REMOVED) as long as
the actual data byte in the split(data,...) function belongs to the telegram
you want to hide! As soon as the passed data byte is part of a new telegram
sequence, the former telegram is out of reach and you cannot remove it any
longer! A short example should clarify this:
Modbus RTU telegrams are split by the idle time between two consecutive by-
tes. If the pause between them is greater as the specified idle time, the current
byte in the split function is indicated as the start of a new Modbus RTU tele-
gram. Here the basic split rule:

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f i n t v a l > t ransmiss ion . bytepause (3 . 5) then
3 −− data i s the f i r s t byte o f the next te legram
4 return STARTED
5 end
6 return MODIFIED
7 end

Imagine you are looking for Modbus telegrams with an invalid checksum (which
is often an indicator for deeper errors in a Modbus transmission). To do so you
want to hide all correct telegrams. Modbus specifies a CRC16 checksum (Cy-
clic Redundancy Check of all bytes with a 16 bit result) which is added to the
telegram body as two subsequent bytes. The details are unimportant. Important
is only the fact, that you cannot validate the checksum as long as the telegram
is not completely passed to the split() function. And that’s the crux of the
matter!
The only way to detect a complete Modbus RTU is when the first byte of the
next following telegram is passed to the split() function6. Since you cannot
return REMOVED for all data save the current one and at the same time return
STARTED for the actual data byte, the situation is intractable.

There are other scenarios which too showing the current filter approach as
not longer contemporary. For example: you want to show only Modbus re-
quests without responses. In doing so you have to hide all correctly received

6You can of course estimate the telegram length by evaluating the content. But this is not only
very time consuming, it especially does not work for invalid or damaged telegrams.

120

13.5. NEW FILTER MECHANISM

request/response pairs. To achieve this you must wait for the response before
you can decide to remove the response AND the FORMER received asso-
ciated request. And this requires to remove telegrams earlier handled by the
split() function - which does not work.
At least another (also Modbus) example before we start describing the new
mechanism:
Imagine you are looking for Modbus exceptions. Exceptions are responses by
a Modbus slave indicating an error condition. Something like an invalid register
or a not supported function. In such a case it would be nice to see only the
request/exception pairs and hide all other telegrams in the ProtocolView win-
dow. Also here you have to wait for the completeness of the response before
you can decide to remove both - the former request and the current response -
when it’s not an exception!

Crucial of the new filter mechanism are two features.

1 You are always working with complete telegrams and must not longer care
about dividing the data stream into single telegrams. This is still the task of the
split() function.

2 You can access any already received telegram which means: You can examine
(and remove) not only the last (complete) telegram but also all former tele-
grams.

The new mechanism takes place in the single function split_complete(no)
and does not affect older template code:

1 tab le function sp l i t _comp le te (no)
2 −− query d i r e c t i o n , data sequence and t ime of the l a s t te legram
3 local d i r , seq , t ime = sequences . get (no)
4 −− examine the telegram content
5 . . .
6 end

The function split_complete is called every time a new telegram is comple-
ted by the split function. It releases you from doing this by yourself (which is
sometimes really hard as noted before) and at the same time reduces the split
code to its core task.
The passed value no contains the number of the last completed telegram and
serves as a functional parameter to query not only the current but also for-
mer telegram information. This includes the telegram direction (source), the
telegram data (as a Lua string) and the telegram time (timestamp of the first
telegram byte). Accessing the last telegram is easily done with:

1 loca l d i r , seq , t ime = sequences . get (no)

The value of no doesn’t matter. Important is, that no always represents the last
completed telegram number and no − 1 the second last and so on. It is - of
course - the responsibility of the template author to check that the expression
no− n ≥ 0 is never invalid!

So far we didn’t say anything about how to remove unwanted telegrams in the
split_complete() function. Since the new mechanism was designed to fil-
ter not only single telegrams but also a range of telegrams the result of the

121

KAPITEL 13. THE PROTOCOL VIEW

function is specified as a table (a pair) with two values {from,to}.

This is explained best by some some real examples.
First we want to hide all telegrams in a Modbus transmission except for a given
slave. In Modbus the master accesses a slave by its device address. This is the
first byte in a Modbus sequence and luckily the slave responses with the same
(its) address in the first byte too. So to hide all unwanted telegrams we just
have to check the first byte of each telegram and remove it, when it’s unequal
to the address we want to display. For a better understanding, here a short de-
scription of Modbus (RTU) telegrams:

ADDR FUNC DATA PAYLOAD CRC16

1 byte 1 byte 0 to 252 bytes 2 bytes

The data payload is of no interest. Important is only the first address byte.

1 loca l addr = 5
2 function sp l i t _comp le te (no)
3 −− query d i r e c t i o n , data sequence and t ime of the l a s t te legram
4 local d i r , seq , t ime = sequences . get (no)
5 −− check the address byte
6 i f seq : byte (1) ~= addr then
7 return { no , no }
8 end
9 end

The filter code is simple. We query the template content in line 4 and assign it
(beside other informations) to the local Lua string seq.
In line 6 we check if the first byte of the string is unequal to the (assumed ad-
dress value 5 in variable addr (see line 1). If the condition is true we return a
table with two values specificating the range of the telegrams we want to remo-
ve (line 7). You must not return a table when the removing condition is false.
But every time you want to remove a telegram you must return a table with the
first and last telegram number (no). In case of a single telegram like here it is
just the same number for first and last, which is return{no,no}7.
Please note that a table in Lua is defined in curly brackets!

Our next example makes use of this feature. This time we want to examine
a Multi-Drop-Bus (in short MDB) transmission. This kind of protocol is widely
used in vending machines. Every time you put a coin in such a machine to get
a hot cup of coffee or a chocolate bar the internal components in the vending
machine communicates with each other via this protocol. The details are of no
further interest. For us one speciality of the protocol will serve as a good exam-
ple to remove two consecutive telegrams.
The MDB protocol is a master/slave protocol like Modbus where the master
always initiate the communication with a request or command. Not all master
requests must be answered by the slaves (the several vending machine com-
ponents). And sometimes the answers are only simple acknowledgements.

One master request is the POLL command. In simple terms it asks the ad-
dressed component if there are some status changes. Because the state is

7If you want to remove the second last telegram, the return expression is return{no-1,no-1}

122

13.6. INDIVIDUAL FILTER DIALOGS

unchanged most of the times, all these POLL commands are mostly of no inte-
rest for the analysis and it would be nice to hide them because they make up a
large part of the record. An unchanged status is answered by a slave (periphe-
ry device) with a single ACK. The ACK is specified as 00h with a set mode bit
(MDB is a 9-bit protocol using the parity bit as mode bit) but we can ignore the
mode bit here.

Our goal is therefore to hide all telegram pairs with a POLL request and a single
00h byte ACK response. The following code does exactly that:

1 −− Master / Pe r iphe ra l d i r e c t i o n
2 MASTER = 1 −− Master on CH1
3 PERI = 2 −− Per iphe ra l on CH2
4
5 function sp l i t _comp le te (no)
6 local d i r , seq = sequences . get (no)
7 i f no > 0 and d i r == PERI and #seq == 1 and seq == " \ x00 " then
8 −− device answered wi th ACK, i f the former telegram
9 −− i s a POLL, remove both

10 loca l l a s t D i r , lastSeq = sequences . get (no − 1)
11 i f # lastSeq == 2 and i s P o l l (lastSeq : byte (2)) then
12 return { no−1,no }
13 end
14 end
15 end

Line 2 and 3 are just other names for the direction or source/origin of a tele-
gram. In our application the Master is connected with CH1, all the peripherals
with CH2.
We require all information about the current (last completed) telegram sequence
and assign it to the variables dir and seq, see line 6.
In the next line we make sure, that we have at least 2 completed telegrams
(n > 0) because we want to access no − 1. We discussed this in the former
sections. We also check, if the telegram is a slave ACK (a singe 00h byte)8.
If so, we query the direction and content of the telegram before (the assu-
med request, line 10). A POLL command is always two byte long. The de-
vice address and command are coded in the first byte, a simple checksum
in the second byte. In MDB the raw POLL command value depends on the
slave type. For a better understanding we outsourced the comparison in the
isPoll(...) function. But you will find the complete code in the MDB tem-
plate.
Here the important thing is only, that in case of a matching telegram pair (POLL
request and single ACK response) we have to return a range of two telegrams.
The former no− 1 request and the current no response. See line 12.

13.6 Individual Filter dialogs
The split_complete() function provides you with a lot of opportunities to
adapt the template to your special analysis situations. But it would be a poor
solution if you have to edit the template every time you want to change the filter
parameters or to add new filters at all.

8We compare the telegram seq with a null byte string, but you can reach the same with
seq:byte(1) == 0

123

KAPITEL 13. THE PROTOCOL VIEW

Luckily the split_complete() function fits very well with the GUI dialog fea-
tures of the ProtocolView. We discuss the dialog feature in detail in chapter 19.
Let us go went back to our first example where we filtered a Modbus trans-
mission for telegrams accessing a certain bus participant by using the device
address in each telegram sentence.

1 loca l addr = 5
2 function sp l i t _comp le te (no)
3 −− query d i r e c t i o n , data sequence and t ime of the l a s t te legram
4 local d i r , seq , t ime = sequences . get (no)
5 −− check the address byte
6 i f seq : byte (1) ~= addr then
7 return { no , no }
8 end
9 end

To edit line 1 every time you want to change the address is annoying. A better
way is to provide a small dialog where the user can edit the wanted address by
itself. The split_complete() function is called by the same Lua interpreter
which is responsible for the splitting of the data stream. Since the interpreter
which executes the dialog interface is a different one, we must ’share’ variables
like the address value in the widgets environment or name space.
Sounds complicated - but is not. To share a variable between two Lua inter-
preters is like to share global variables between two functions. You just have to
add a widgets. in front of the variable name like widgets.VARIABLE_NAME
Let us take a look of the following code to make it clearer:

1 −− preset the used GUI v a r i a b l e s .
2 i f not widgets .FILTER_DEVICE_ADDRESS then
3 widgets .FILTER_DEVICE_ADDRESS = 1
4 end
5 i f not widgets .FILTER_DEVICE_ADDRESS_ENABLE then
6 widgets .FILTER_DEVICE_ADDRESS_ENABLE = 0
7 end
8
9 function sp l i t _comp le te (no)

10 −− apply address f i l t e r on ly when enabled v ia checkbox
11 i f widgets .FILTER_DEVICE_ADDRESS_ENABLE == 1 then
12 −− query d i r e c t i o n , data sequence and t ime of the l a s t te legram
13 loca l d i r , seq , t ime = sequences . get (no)
14 −− check the address byte
15 i f seq : byte (1) ~= widgets .FILTER_DEVICE_ADDRESS then
16 return { no , no }
17 end
18 end
19 end
20
21 function d ia log ()
22 widgets . S e t T i t l e ("Modbus Device F i l t e r ")
23 −− swi tch on / o f f the address f i l t e r
24 widgets . CheckBox { name=" wxFi l terDeviceAddressEnable " ,
25 l a b e l =" Device Address " , row=1 , co l =1 ,
26 value = widgets .FILTER_DEVICE_ADDRESS_ENABLE == 1

}
27 −− i npu t the device address
28 widgets . Sp inC t r l { name=" wxFi l terDeviceAddress " ,
29 min=1 , max=255 , row=1 , co l =2 ,
30 value = widgets .FILTER_DEVICE_ADDRESS }
31 end
32

124

13.7. EXPORT TELEGRAMS

33 function apply ()
34 −− f i l t e r device address (enable checkbox and address f i e l d)
35 widgets .FILTER_DEVICE_ADDRESS = widgets . GetValue (
36 " wxFi l terDeviceAddress ")
37 widgets .FILTER_DEVICE_ADDRESS_ENABLE = widgets . GetValue (
38 " wxFi l terDeviceAddressEnable ")
39 return " Reload "
40 end

In the lines 2-7 we define the global and shared variables to hold the device
address and the filter enable flag.
The following split_complete() function is the same as before but now
uses the shared address variable for the comparison (line 15) and is only exe-
cuted, when the enable flag is true (line 11).
Function dialog() is responsible for the user interface. Here we simply use
a checkbox to switch on/off the address filter (line 24) and a SpinCtrl to let the
user input an address between 1...255 (line 28).
As mentioned before: All details for writing a dialog are covered in chapter 19.
In this chapter we also address how you can store the dialog settings in a per-
sistent way.

Last but not least the apply() function. This function is called every time the
user clicks the dialog apply button. Here we assign the user input to the ac-
cording ’global’ variables (line 35 and 37) and return ’RELOAD’ to instruct the
ProtocolView to parse and filter all telegrams again by reloading the transmis-
sion.

13.7 Export Telegrams
The MSB-RS232 program is well equipped for most analyzing intentions. Never-
theless there are situations when you have a need for processing the recorded
data - here the telegrams - with additional tools or external applications which
are specialized in certain things the analyzer software cannot handle.

The ProtocolView supports an unlimited number of protocols thanks to the abili-
ty to let the users write their own templates for displaying the telegrams. But
this also means that the exported data directly depends on the individual tem-
plates.
The ProtocolView therefore uses an intelligent mechanism to share the tele-
gram information with other applications. In most cases the mechanism will
work out of the box. But it’s still good to know how the program determines
what information are suitable for the export. In particular when you intend to
use the telegram information in a spreadsheet application.

13.7.1 How the program determines the export fields
In the prior sections you learned all about the basic box model. Each box con-
sists of a indicating caption and the relating information. By labeling a certain
information you already assigned this data with a name. For instance:
You have a telegram field (or box) which shows the device address. It’s ob-
viously that you name the field as ’Address’ or likewise. And it is only logical
that you want to export the information (all telegram address fields) under the

125

KAPITEL 13. THE PROTOCOL VIEW

same name.

The assignment caption="Field Name" in the template script therefore be-
comes the elementary part of the export mechanism. Every time you open the
export dialog, the program extracts all caption labels and handles them in an
internal list. The prefixes chosen in the settings dialog are put in front of the list.
Than the list is shown to the user who can select or deselect single or multiple
items.
Except for the prefixes (which were displayed always at the beginning) all ex-
tracted fields are listed alphabetically. This is due to the fact that the order of
the caption="..." assignments in the template script doesn’t say anything
about the relating field order in a telegram.
The actual export process is similar to the displaying of the individual telegrams
and only depends on the chosen export format.

1 Export as CSV
2 Export as HTML
3 Export as Text
4 Export as Latex

All selected telegrams are fed through the Lua interpreter. The script engine
assigns the data according to the caption name into the right column of the
CSV file or creates a HTML table cell with the same text and background color
as shown in the telegram itself. Not selected telegram fields are suppressed
and don’t show up in the export file.
Please note: Each export format serves a different purpose. In a CSV file every
possible field represents a column. But not every telegram is composed of all
fields. For instance: Some telegrams may consist of additional data fields, other
short telegrams are hardly resembling more than an acknowledge. All fields
(column items) which are not part of the current telegram are left with an empty
string "".
A HTML export on the other side is used to represent every telegram as shown
in the program window for documentation. For that reason the HTML export
creates a single HTML table for every telegram, whereas every table consists
of only that fields, which are part of the current telegram and were selected
formerly in the export dialog.

13.7.2 The export dialog
Before you start an export you have to select the wanted telegrams. Without a
chosen range of telegrams, the one marked by the cursor is used. The export
dialog is opened with Ctrl+E or by click on the export item in the file menu.
The dialog window presents you a list of all available telegram fields as well as
enabled prefixes and preselect all of them. You can disable respectively enable
each item singly. Or you select or deselect all in a single rush with click of one
of the two buttons below.
The default export format is CSV (comma separated values), but you can like-
wise use HTML as an output format.
After input a valid file name (the program default is the file telegrams with the
according extension on your desktop), the export starts as a parallel process.
You can always stop the export by clicking on the ’Cancel’ button on the left

126

13.7. EXPORT TELEGRAMS

side of the progress gauge in the status bar. And you can continue examining
the record while a longer running export is in progress.

13.7.3 Export as CSV file
Imagine you want to find the maximum time between a request and respon-
se. Or you are interested in some statistic about the frequency of telegrams
with a certain type. There are a lot of questions which are better handled by a
spreadsheet programs like Microsoft Excel®, Open Office Calc or similar tools.
The ProtocolView therefore offers you an easy way to export all displayed in-
formation as a CSV file with comma separated values.
All column values are quoted with quotations marks and can be easy imported
by most of all spreadsheet applications. The headline of the CSV file consists
of the column names as extracted from the caption assignments in the templa-
te script.
If you are interested only in a few data deselect all unnecessary fields to qui-
cken the export.

13.7.4 Export as HTML

Open Office Writer
with html telegram export

The HTML export is mainly intended for documentation purposes. The program
outputs the selected telegrams as a valid html document whereas every single
telegram is rendered as a html table, representing the telegram as shown in
the Protocol View window. This includes besides the data information also the
text and background color.
Most text processing applications are able to import such a html file. Open
Office user for instance can simply drag and drop the file into their documents
(see the example picture on the left side).

13.7.5 Export as text
This kind of export outputs the content of the selected telegrams as a sequence
of Label(VALUE) expressions. It comes into play when you want to use the
telegram information in a raw text environment or when you documentation/re-
port tool isn’t able to handle graphical objects. In contrary to the (also raw text)
CSV output, the text export of a telegram only contents the existing telegram
fields which makes it - under some circumstances - a lot easier to parse the
information for further processing. Here a short excerpt from a text export:

Src(Master) Dest(1) Fnc(Read Coils) Desc(Addr=0, Quantity=10) Cks(0DBC)
Src(1) Dest(Master) Fnc(Read Coils) Desc(Byte count=2) Data(00 00) Cks(FCB9)

13.7.6 Export as Latex
This format is mainly intended for users who prefer LATEX as their text documen-
tation system. Each selected telegram is exported as a tabular environment
whereas every box is represented by a table cell. The several cells are colo-
red like the boxes in the telegram window, using the additional LATEX packages
color, colortbl and xcolor.
Before inserting a exported telegram, make sure that you add these LATEX
packages with the following command at the beginning of your LATEX file:

\ usepackage { co lo r , c o l o r t b l , xco lo r }

127

KAPITEL 13. THE PROTOCOL VIEW

You can switch on/off certain telegram fields before exporting them. But it is
also easy to remove unnecessary entries in the table later in the tabular
code.

13.7.7 Special notes about the caption labeling
We mentioned above: The export fields (columns in CSV) are named by the
caption assignment in the template box functions. As long as you are using
plain text and unique names the export results will look as expected.
But considering the following box with a composed caption label including the
current function number. (A more readable description of the function is dis-
played in the text variable).

1 box . t e x t { cap t ion ="Fnc (" . . tg : data (2) . . ") " , t e x t =GetFuncDesc (tg : data (2))
}

The displayed output may be something like this:

Func (8)
This is function 8

The export mechanism unfortunately cannot assemble the complete caption
label. For this it has to execute the template with all telegrams BEFORE it can
start the export itself. And: A lot of different Fnc(...) labels leads to a confusing
amount of different export field names when only one field (the function num-
ber) will be needed.
Remember: The export mechanism searches for assignments in the form of
caption="NAME". In the example above the extraction of the caption name
will give you "Fnc (" and discards the remaining expression. When your cap-
tion name starts with an evaluation, i.e. caption=tg:data(1).."-Typ" the
search for caption=" fails completely and therefore neither won’t be listed in
the export dialog nor exported at all.
The same occurs when you are using a variable for the caption. I.e.

1 l a b e l = "Chksum OK"
2 i f ChecksumTest () == fa lse then
3 l a b e l = "Chksum f a i l s "
4 end
5 box . t e x t { cap t ion= labe l , t e x t =GetChecksumByte () }

Also here the search for a pattern like caption="..." fails and both possible
caption labels won’t be added to the list of exportable fields.
Other effects may be less significant. Nevertheless it’s good to keep them in
mind. The extraction mechanism cannot understand whether the caption as-
signment is part of a out-commented section or in between a function which
happens to be never executed. In both cases the export dialog will show the
according field names. But this will give you at worst only empty records in a
CSV column.
So as a conclusion: Just avoid compounded expressions for the caption and
only use plain text for it!

128

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

13.8 ProtocolView specific Lua extensions
The following section covers all Lua modules, functions, extensions and data
types which are not necessarily part of the Lua language but especially imple-
mented or added for the ProtocolView. Lua offers - naturally - a lot more data
types, modules and functions which we - alas - cannot handle here.

box module : The box module is responsible to display the data of each tele-
gram.

debug module : The debug module let you output ProtocolView related debug
information in the debug window.

event module : The event module is only available in the split function and
gives you access to additional information of the current data event.

linestates module : With the linestates module you can check if a certain line
signal has changed or query the number of a given signal alternation.

sequences module : The sequences module is only available in the function
split_complete() and let you access all already completed telegrams. It is
especially important for telegram filter mechanisms.

shared module : The protocol template mechanism uses an independent Lua
interpreter for every data direction. The shared module let you share data bet-
ween both of them.

telegram type : A ProtocolView specific data type. The telegram type covers
all information about a single telegram.

telegrams module : The telegrams module gives you access to all occuring
telegrams up to the present time. The result is always a variable of the type
telegram. It replaces the tg and tgprev module which were limited to the cur-
rent and previous telegram. The telegrams module it is only accessible in the
out() function.

widgets module : Provides you with individual user interface elements to wri-
te your own template setup and/or filter dialogs. This also includes a special
variable sharing method between the dialog and the other template functions
and an automatism to permanently store/restore dialog settings. The module is
described in its own chapter 19.

The several types, functions and modules in alphabetic order:

13.8.1 The box module
This module provides you with the necessary ’boxes’ you need when displaying
any content in the telegram window. The basic box is the ’text’ box. It allows you
to display any information (numbers, hex sequence, text) with a certain label
(caption) in a rectangular shape.
Each box can have it’s own individual text and background colors, passed with
the named parameters fg and bg. The default is a black text (and outline) on
a white background.
But you may find also the ’space’ box sometimes helpful in case you want to
set several boxes apart.

129

KAPITEL 13. THE PROTOCOL VIEW

Function Description
setup New! Let you add label/colour pairs for a general box coloring

and increase the number of lines in a box.
space The space box inserts just an empty space with a width given in

characters or pixel.
text A common box with free definable caption, text content, fore-

ground color (text and outline) and background.

box.setup
With box.setup you can assign certain box properties as default settings to
all boxes in your script at a central location. The settings in the setup overrules
all other individual box parameter, especially the background colour. By this you
can for instance preset all telegram fields with the caption ’Checksum’ with a
given colour and must not do it in several code lines again and again.

Example

1 box . setup {
2 l i n e s =3 ,
3 co lours = {
4 [" Checksum "] = 0x00FF00 ,
5 [" Source "] = 0x80FFFF
6 }
7 }

And! With version 5.0.0 the number of lines in a box are not limited to 2 anymore
(a caption and a text). You can chose between 1 to 4 lines specifying the height
of all boxes as text lines.
One line only shows the caption, but with a box height 3 or even 4 you can pass
two or three lines to the internal box text parameter.

Example

1 box . setup { l i n e s =4 }
2 box . t e x t { cap t ion ="TEST" , t e x t =" l i n e 1 \ n l i ne2 \ n l i ne3 " }

Please note the 2 line feeds \n between the passed lines in line 2 above.

box.space
Inserts an empty space with a given width. Without a parameter a space of 10
pixel is used. You can specify the width as pixels or as a number of characters.
The latter respects the current font size (zooming) which means: The ’space’
grows with the font magnification.

box.space{ em=0, px=10 }

• em: the width defined as count of ’M’ characters.

• px: the width defined as pixel.

Example

130

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

1 function out ()
2 −− i n s e r t a smal l space wi th the width o f two space (blank)

charac te rs
3 box . space { em=2 }
4 −− i n s e r t an empty space wi th the width o f 50 p i x e l
5 box . space { px=50 }
6 end

box.text
Display a common box with individual colors, caption and content string. The
size (width) of the box is automatically adapted to its content.

box.text{ caption=STRING, text=STRING [, fg=RGB, bg=RGB, em=0, px=0] }

• caption: a string displayed as caption.

• text: a string displayed as the data content.

• fg: Optional RGB color for the text and outline, default is black.

• bg: Optional RGB color of the box background, default is white.

• em: Optional width defined as count of ’M’ characters.

• px: Optional box width in pixel. The default width is the box text width.

Example

1 function out ()
2 box . t e x t { cap t ion =" Caption " , t e x t ="Some t e x t " , px=100 ,
3 fg =0xFF0000 , bg=0xAADDFF }
4 end

13.8.2 The debug module
The Protocol View contains a built in debug window which you can use to show
special information about the state of your script or the results of certain ope-
rations. The debug module covers all functions to output any text or value. You
can also suspend, resume or summarize the output in case of repeating mes-
sages. To open the output window for debug messages, just press:
Ctrl + Alt + D
Function Description
clear Clears the content of the debug window.
print Outputs the given arguments in the debug window. You can

pass as many arguments as you want. Each argument (text
or value) must separated with a comma.

resume resumes a former suspended output.
summarize if activated the debug output collects all identical messages

and show it only once with the repeating number.

131

KAPITEL 13. THE PROTOCOL VIEW

suspend stops (suspends) the debug output. All further print calls will
be suppressed.

timeprompt put the current time (hh:mm:ss) in front of each debug output.
You can enable or disable it by passing true or false to the
function.

debug.clear
Clears the content of the debug output window.

debug.clear()

Example

1 −− a g loba l counter ho ld ing the number o f e r r o r responses
2 er rorCounter = 0
3
4 function s p l i t (data , i n t v a l , a l t e r , s t r , f i l t e r)
5 i f a l t e r or i n t v a l > t ransmiss ion . bytepause (3 . 5) then
6 −− a f u n c t i o n byte > 0x80 means an e r r o r response i n Modbus
7 i f # s t r > 1 and s t r : byte (2) >= 0x80 then
8 er rorCounter = er rorCounter + 1
9 debug . c l ea r ()

10 debug . p r i n t (" E r ro r Counter : " . . e r rorCounter)
11 end
12 return STARTED
13 end
14 −− a l l o ther bytes extend the cu r ren t te legram
15 return MODIFIED
16 end

The example above counts all error responses in a Modbus RTU transmission.
A error response or message is indicated by a function value (second byte in a
Modbus RTU telegram) with a set MSB (most significant bit).
Since only the split() function ’sees’ all data, the debug output must be pla-
ced in the split function! Line 9 clears the former debug output before replacing
it with the current counter.

debug.print
Output the given, comma separated, arguments in the debug window.

debug.print(param1,param2,...)

• param: comma separated list of parameters.

Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 i f tg : s i ze () > 10 then
4 −− output the t ime and s ize o f the cu r ren t te legram
5 debug . p r i n t (" Time : " . . tg : t ime () , " Size : " . . tg : s i ze ())

132

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

6 end
7 end

Avoid heavy usage of the debug.print

Every output via debug.print takes some time and will slow down the
execution of your template script a little bit.

debug.resume
Continues the previously suspended debug output. Here we stop all debug-
ging after receiving a telegram with no hex 10 as a first byte and resume the
debugging when another telegram starts with hex 10 again.

debug.resume()

Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 i f tg : data (1) == 0x10 then
4 −− f i r s t ou tput the debug message
5 debug . p r i n t (" Data : " . . tg : data (1) , " Size : " . . tg : s i ze ())
6 −− then suppress any other output
7 debug . resume ()
8 else
9 −− enable the debug output again

10 debug . suspense ()
11 end
12 end

debug.summarize
Collects all identical debug messages and output them when the first different
one occurs. The repeated messages are shown like this:

THE DEBUG MESSAGE
The previous message repeated n times.

n means the number of repetitions.
Usually you put a statement like debug.summarize(true) at the beginning
of your script, that is outside of the split() or out() function because there isn’t
any need to execute the command more than one a time. (See line 1 in the
example below).

debug.summarize()

Example

1 debug . summarize (true)
2 debug . t imeprompt (true)

133

KAPITEL 13. THE PROTOCOL VIEW

3
4 function s p l i t (data , i n t v a l)
5 i f i n t v a l > t ransmiss ion . b i tpause (33) then return STARTED end
6 return MODIFIED
7 end
8
9 function out ()

10 −− your output code . . .
11 end

debug.suspend
Suppress all debug output via debug.print till another call of debug.resume
is executed. See the resume example above for usage.

debug.timeprompt
Enable or disable an additional prefix with the current time for every debug
message when the output is done. The default is an output without any prefix.
If activated, each output is headed by the current time in the format hh:mm:ss.
For instance:

12:24:48: My debug message

See line 2 in the example above.

13.8.3 The event module
The event module provides you with additional data event information which
are not passed to the split function as parameter. Please note! The event
module is only accessible in between the split() function body and cannot
be used in function out().

Function Description
data returns the current data as 9 bit value.
dir returns the source or direction of the current data.
isbreak returns true if the current byte is a break.
level returns the current signal level of the given line when the data

event occurred.
number returns the event position in the record counted from zero.
time returns the time stamp of data event in seconds since the start

of the record.

event.data
Returns the data of the current data event as a 9 bit value. It is the same as the
passed data parameter and is listed here in the sake of completeness.

event.data()

Example

134

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− t e s t f o r LF
3 i f event . data () == 0x0A then
4 return COMPLETED
5 end
6 return MODIFIED
7 end

event.dir
Returns the direction or source of the current data event as an integer value
with the following result: 1: Port A (CH1), 2: Port B (CH2).

event.dir()

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 local eos = 13
3 i f event . d i r () == 2 then eos = 10 end
4 i f # s t r == 1 then return STARTED end
5 i f data == eos then return COMPLETED end
6 return MODIFIED
7 end

event.isbreak
Returns true if the current byte is a break. A break is also received as a NULL
byte. With event.isbreak() you are able to distinguish between a normal
NULL byte and a real break. This function comes in handy i.e. when your pro-
tocol specifies a break as a delimiter.

event.isbreak()

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f event . i sb reak () then return STARTED end
3 return MODIFIED
4 end

event.level
Returns the current signal level of the given line when the data event occurred.
The line is passed as a number from 1...8 according to the display in the control
program. Possible results are: 1: high level, -1: low level, 0: invalid/inactive.

event.level(signal=NUMBER)

• signal: signal or line number (1...8)

Example

135

KAPITEL 13. THE PROTOCOL VIEW

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− the RI s i g n a l marks a spec ia l one byte broadcast te legram
3 i f event . l e v e l (8) == 1 then return STARTED+COMPLETED end
4 i f # s t r == 1 then return STARTED end
5 i f data == eos then return COMPLETED end
6 return MODIFIED
7 end

event.number
Returns the event position or number in the record stream. The number is
counted from zero. Normally you don’t need this function but it could be useful
in case you want to know, if some other events (line state changes) were recor-
ded. The latter depends on your record settings.

event.number()

Example

1 lastNumber = 0
2 function s p l i t (data , i n t v a l , a l t e r , s t r)
3 i f event . number () ~= lastNumber + 1 then
4 lastNumber = event . number ()
5 −− a l i n e s ta te event has occurred s ince the l a s t c a l l
6 return COMPLETED
7 end
8 lastNumber = event . number ()
9 return MODIFIED

10 end

event.time
Returns the time stamp of the current data event in seconds since start of the
record. The result is a floating point number with microsecond resolution.

event.time()

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− remove a l l te legrams i n the f i r s t 5s o f the record
3 i f event . t ime () < 5.0 then return REMOVED end
4 i f # s t r == 1 then return STARTED end
5 i f data == eos then return COMPLETED end
6 return MODIFIED
7 end

13.8.4 The linestates module
By its design the split function doesn’t ’see’ events except for transmitted
data. If you need to know if a certain line like RTS or CTS has changed to

136

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

initiate a new telegram frame (e.g. to enable carrier modulation like some Radio
RTU producer do), you not only have to query the current line states when the
data byte arrives. You also have to check, if the specified line has changed
before. The linestates module comes to fill this gap.
Please note! The linestates module is only accessible in between the split
function body and cannot used in out().

Function Description
changed(signo) returns true if the given line (signo 1...8) has changed

since the last call.
count(signo) returns the number of changes of the given line signo

(1...8).

linestates.changed
Returns true if the given signal number (line) has changed since the last call.
The signal number is counted from 1 to 8 and meets the sequence as shown
in the control program display.
A signal alternation is always detected when a signal changes its tri-state level.
This includes not only changes from high to low but also changes from valid to
invalid and visa versa.

linestates.changed(signo)

• signo line (signal) number.

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 local RTS = 6
3 local CTS = 7
4 i f event . d i r () == 1 then
5 i f event . l e v e l (RTS) == 1 and l i n e s t a t e s . changed (RTS) then
6 return STARTED
7 end
8 else
9 i f event . l e v e l (CTS) == 1 and l i n e s t a t e s . changed (CTS) then

10 return STARTED
11 end
12 end
13 return MODIFIED
14 end

linestates.count
Returns the number of line changes of the given line or signal number since
start of the record. The signal number is counted from 1 to 8 and meets the
sequence as shown in the control program display.
A signal alternation is always detected when a signal changes its tri-state level.
This includes not only changes from high to low but also changes from valid to
invalid and visa versa.

linestates.count(signo)

137

KAPITEL 13. THE PROTOCOL VIEW

• signo line (signal) number.

Example

1 rtsChanges = 0
2 function s p l i t (data , i n t v a l , a l t e r , s t r)
3 local RTS = 6
4 i f l i n e s t a t e s . count (RTS) > 5 then
5 rtsChanges = 0
6 return STARTED
7 end
8 return MODIFIED
9 end

13.8.5 The sequences module
This module provides only one function and serves to access information about
former received telegram sequences in the split_complete() function. The-
se are the telegram direction (source), the telegram data as a Lua string and
the telegram timestamp (of the first telegram byte).

Differences between sequences.get and telegrams.at

There is another method to access the received telegrams which you
have become accustomed to use in the out() function. So why a diffe-
rent new one?
First: telegrams.at(index) returns not only completed but also te-
legrams actually still in progress.
Second: sequences.get(no) is highly optimized to make as little per-
formance impact as possible since if used it is executed with every com-
pleted telegram. Therefore it only returns three results and not an object.

Function Description
get returns direction, data and time of the telegram with the given

index.

sequences.get
Returns direction, data and time of an earlier received and completed tele-
gram with the given index relative to the passed telegram number (no) in the
split_complete(no) function.

sequences.get(index)

• index: Telegram number.

Example

138

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

1 loca l addr = 5
2 function sp l i t _comp le te (no)
3 −− query d i r e c t i o n , data , t ime of the l a s t rece ived telegram
4 local d i r , seq , t ime = sequences . get (no)
5 −− check the address byte
6 i f seq : byte (1) ~= addr then
7 return { no , no }
8 end
9 end

13.8.6 The shared module
The protocol mechanism uses two Lua interpreter to split the incoming data
stream into individual telegrams. One for every data direction.
Therefore you never have to worry about the right source of the passed data
parameter. Also the internal representation of the already received bytes (given
as str) always relates to one data source.
Using two independent Lua interpreters makes the operation of the template
function much easier. But it has one pitfall:
Despite the fact, that you can create variables outside of the split function,
you nevertheless cannot use them to share an information between the two
Lua interpreters since they work totally independent of each other.
If you have a need to share data between the split function called by data
source A and the second one called when a byte of source B arrives, than the
shared module comes into play.
All variables put into the shared module are accessible from both interpreters.
You can create such a variable for instance when a certain byte on port A
arrives and query its content when handling data on port B.

Function Description
get returns the content of the global variable with the given name.
set store the variable with the given name.

shared.get
Returns the global variable with the given name or nil if no variable with this
name exists

shared.get(name)

• name: The name of the variable as a Lua string.

shared.set
Create a new variable with the given name and assign the value to it. If the
variable already exists, its content will be overwritten.

shared.set(name, value)

• name: The name of the variable as a Lua string.

• value: Any Lua value (number, boolean, string).

The following code uses a imaginary protocol. Every telegram starts with a
colon ’:’ and ends with LF. Consider a special telegram used as a ’life ping’.

139

KAPITEL 13. THE PROTOCOL VIEW

In our example we like to hide every ’life ping’ AND the relating response. To
make the whole matter a little bit more complicated, the response to a ’life ping’
has to be the same as to other requests.
A ’life ping’ is specified as an empty telegram, which means a colon ’:’ followed
by a LF.
To distinguish a ’life ping’ response from other identical responses we have to
memorize a ’life ping’ telegram, for instance received on port A.
In case of a later response we than check the memorized state to show or hide
the according telegram. Here is the code:

Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 i f data == 58 then return STARTED end
3 i f data == 10 then
4 i f shared . get (" L i f eP ing ") then
5 return REMOVED
6 end
7 i f # s t r == 2 then
8 shared . set (" L i f eP ing " , true)
9 return REMOVED

10 else
11 shared . set (" L i f eP ing " , fa lse)
12 end
13 return COMPLETED
14 end
15 return MODIFIED
16 end

The example above seems a little bit constructed, but it serves our purpose
how to use the shared module to exchange information between the two Lua
interpreters.
Line 2 just triggers the start of a new telegram (58 is the decimal ASCII value
of the colon) . A received LF (decimal 10) marks the end of the telegram (line
3). We then have to check for a ’life ping’ telegram, which means the shared
variable LifePing was set to true (line 4). Returning REMOVED in this case
hides the telegram from being displayed.
In line 7 we test for every ’life ping’ telegram (length is 2 bytes) and set the
global LifePing to true or false. In case of a ’life ping’ the telegram has to be
REMOVED (line 9). Otherwise the telegram state is COMPLETED (line 13).
All other data bytes are added to the internal telegram representation by retur-
ning MODIFIED.

Please note! The code above will not work by using a normal Lua global value
instead of the shared module since every interpreter of the according data di-
rection uses his ’own’ global values. The shared module is the only possibility
to shared data between both interpreters.

13.8.7 The telegram type
The data type telegram maps the telegram properties of a very particular
telegram in the record. It is always the result of accessing one of them via the
telegrams module (notice the plural in the module name).

140

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

You can query every property by calling the telegram’s related function in an
object oriented manner. An additional dump method provides a quick overview
of the whole telegram content.

Function Description
data Returns the data as a 9 bit value at the given position. You can

address a certain data from the beginning with positive indexes
(1 means the first data) or with negative indexes backwards (-1
accesses the last data).

datatime Returns the timestamp of the given telegram data byte in se-
conds with microsecond precision. The indexing of the data by-
tes is the same as with function data above.

dir Queries the direction or source of the telegram. Returns 1 when
the telegram was received at Port A, or 2 otherwise (Port B).

dump Returns a Lua string with a hexadecimal or decimal list of all or
a given range of the telegram data. dump comes in handy when
you need a quick insight of the telegram content or in case you
just want to display a certain range of data.

duration Provides the time length or duration of the telegram in seconds.
This means the time between the first start bit and the last stop
bit.

geterror Returns the error state (frame, parity, break) of the data byte at
the given telegram position. The results are:
0:no error, 1:frame, 2:parity, 4:break.

isbreak Returns true, if the data byte at the given position is a break.
number Queries the telegram number, the result is counting from 1.
size Returns the data size or length of the telegram. Please note:

The data may consist of 9-bit values which are also counted as
one data byte.

string Returns the telegram content as a Lua string. Since a Lua string
cannot cover 9-bit values, possible existing 9-bit values are re-
duced to 8-bit.

time Returns the time when the telegram was received in seconds
with micro second precision. For instance: A value of 25.034198
means a telegram received 25.034198 seconds after starting
the record.

telegram:data
Returns the data value at the indexed position of the telegram. Indexes starts
from 1 as usual. Negative index values address the data from behind. Because
the MSB-RS232 also supports 9 bit value, the return value is in the range of
0...511.

telegram:data(INDEX)

• INDEX index of the requested byte.

141

KAPITEL 13. THE PROTOCOL VIEW

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− shows the f i r s t byte i n the telegram as decimal value
5 box . t e x t { cap t ion =" F i r s t " , t e x t = tg : data (1) }
6 −− shows the l a s t byte i n the telegram as decimal value
7 box . t e x t { cap t ion =" Last " , t e x t = tg : data (−1) }
8 end

telegram:datatime
Returns the data timestamp of the indexed telegram data byte. Indexes starts
from 1 as usual. Negative index values address the data from behind.

telegram:datatime(INDEX)

• INDEX index of the requested byte.

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− shows the pause between the stop b i t o f the f i r s t byte and the
5 −− s t a r t b i t o f the second byte (subs t rac t sending t ime)
6 local delay = tg : datat ime (2) − tg : datat ime (1) − t ransmiss ion .

bytepause (1)
7 box . t e x t { cap t ion ="Pause 1−2", delay }
8 end

telegram:dir
Queries the telegram direction or source. A value of 1 means the telegram was
received at Port A, a value of 2 marks a telegram from Port B.

telegram:dir

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4
5 i f tg : d i r () == 1 then
6 −− do something wi th data form por t A
7 else
8 −− te legram received at po r t B
9 end

10 end

142

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

telegram:dump
Creates a string summarizing (hex dump) of a given range of telegram data as
3-digit hex or decimal values, separated by a specific character. Without any
argument, the whole telegram content is used. The default number base is hex
(16) and the default separator is a space.

telegram:dump{ first=1, last=-1, base=16, width=3, sep=’ ’, max=LEN }

• first: Specifies the first data used in the hex dump, default is the first data
in the telegram (1).

• last: Specifies the last data used in the hex dump, default is the final data
of the telegram (-1 or telegram:size()).

• base: The used number base, default is hex (base 16).

• width: The number of digits used for the data output, default is 3 digits
(to support also 9 bit values). In most case you will pass width=2 when
using the hexadecimal notation.

• sep: Replaces the default space separator with any character or sting.
An empty string suppresses the separator completely.

• max: Limits the maximum count of data in the hex dump. A given values
of max=4 outputs only the first two and last two data values and displays
the remaining data as a quantum value. The default value is equal to the
telegram length (LEN).

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− show the complete telegram content as hex dump
5 box . t e x t { cap t ion =" Data (hex) " , t e x t = tg : dump { } }
6 −− shows the l a s t two bytes as hex w i thou t separa tor and 2 d i g i t
7 box . t e x t { cap t ion ="EOS" , t e x t = tg : dump{ f i r s t =−2, width =2 , sep = ’ ’ }
8 −− shows the second byte as a decimal value
9 box . t e x t { cap t ion ="Second " , t e x t = tg : dump{ f i r s t =2 , l a s t =2 , base=10

}
10 end

telegram:duration
Returns the telegrams time length or duration in seconds. The duration time is
defined as the difference between the start bit of the first and the stop bit of
the last transmitted byte. The result is a double precision floating point number
with the usual resolution of one micro second.

telegram:duration()

Example

143

KAPITEL 13. THE PROTOCOL VIEW

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− d i sp lay the du ra t i on o f the telegram
5 box . t e x t { cap t ion =" Length (s) " , t e x t = tg : du ra t i on () }
6 end

telegram:geterror
Returns a value unequal to zero if the byte at the indexed position was marked
with an error. Possible results are:
0: No error, 1: Frame error, 2: parity error, 4: break

telegram:geterror(INDEX)

• INDEX index of the requested byte.

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 local e r r = tg : g e t e r r o r (1)
5 i f e r r then
6 loca l t = {
7 [1] = " Frame " ,
8 [2] = " P a r i t y " ,
9 [4] = " Break "

10 }
11 box . t e x t { cap t ion =" Er ro r " , t e x t = t [e r r] or "UNKNOWN: " . . e r r }
12 end
13 end

telegram:isbreak
Returns true, if the data (null) byte at the indexed position of the telegram is a
break.

telegram:isbreak(INDEX)

• INDEX index of the requested byte.

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− d i s t i n g u i s h between a normal n u l l byte and a break
5 i f tg : data (1) == 0 then
6 i f tg : i sb reak (1) then
7 box . t e x t { cap t ion ="BREAK" , t e x t = tg : data (1) }
8 else
9 box . t e x t { cap t ion ="NULL" , t e x t = tg : data (1) }

144

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

10 end
11 end
12 end

telegram:number
Queries the number of the telegram. The telegram numbers are counted from
1 (the very first received telegram).

telegram:number()

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− show the cu r ren t te legram number
5 box . t e x t { cap t ion ="Number " , t e x t = tg : number () }
6 end

telegram:size
Queries the size of the telegram. Please note that also a 9 bit value in a tele-
gram is counted as one item.

telegram:size()

Example

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− show the s ize o f a telegram
5 box . t e x t { cap t ion =" Length " , t e x t = tg : s ize () }
6 end

telegram:string
Returns the complete telegram data as a Lua string.
A Lua string can contain any byte in the range 0...255 but only 8 bit values. If
the telegram consists of 9 bit values, the ninth bit will be discard.
In contrary to the earlier tg and tgprev modules, telegram.string() sim-
ply returns the whole telegram data as a Lua string without accepting any sub-
string defining parameters.
Since it’s easier to leave the relating substring functionality to the Lua string
module, there isn’t any reason to implement it again. And: Since Lua allows the
indexing of substrings from the end, it has additional advantages.

telegram:string()

Example

145

KAPITEL 13. THE PROTOCOL VIEW

1 function out ()
2 −− access the cu r ren t te legram
3 local tg = telegrams . t h i s ()
4 −− e x t r a c t the bytes 2 . . . 5 as a Lua s t r i n g
5 local data = tg : s t r i n g () : sub (2 ,5)
6 −− query the l a s t two EOS bytes
7 local eos = tg : s t r i n g () : sub(−2,−1)
8 end

telegram:time
Returns the time stamp of the telegram which is the measured time of the
first received byte in seconds since starting the record. The result is a double
precision floating point number with the usual resolution of one micro second.

telegram:time()

Example

1 function out ()
2 −− show the response t ime to the former telegram
3 local t c = telegrams . t h i s ()
4 local tp = telegrams . prev ()
5 −− handle not e x i s t i n g prev ious telegram (a t very f i r s t p o s i t i o n)
6 i f not tp then
7 tp = t c
8 end
9 box . t e x t { cap t ion ="Response t ime " , t e x t = t c : t ime () − tp : t ime () }

10 end

13.8.8 The telegrams module
The telegrams module provides you with an easy method to access any te-
legram recorded up to the current time. The big advance: In contrary to the
obsolete tg and tgprev modules the access isn’t only limited to current and
former telegram. By using the telegrams module your are now able to handle
the active telegram in the out() function depending on the data/state of any
telegram occurring before9.
For instance: You have to treat a telegram in a different way when one of the
former telegrams was of a certain type. Since it often isn’t just the former or
penultimate telegram, you need a way to ’iterate’ through the prior telegrams
and looking for the according telegram.

Quering any recorded telegram is simply done by calling the module function
telegrams.at(index) whereas index refers to the telegram you want to ac-
cess.
The value (or object) returned by the function telegrams.at is always of type
telegram (see 13.8.7). This type acts as an interface and provides the same

9Up to now the out() function could only handle the current and previous telegrams by using the
modules tg and tgprev.

146

13.8. PROTOCOLVIEW SPECIFIC LUA EXTENSIONS

functions as you are accustomed from the former tg or tgprev modules.
The telegrams.at(index) function is the only one you ever need. But sin-
ce the access to the current and previous telegram is the most widely-used
operation, the module offers two alias functions for these. The following table
lists all module functions:

Function Description
at returns the telegram at the given index/position.
this returns the current telegram handled by the out function. It is

an alias for telegrams.at(-1).
prev returns the previous telegram handled by the out function. The

same like telegrams.at(-2).

telegrams.at
The telegrams.at(index) function accepts absolute and relative indexes
and returns the relating telegram - or nil if you pass an invalid index.
The effort is always linear and it makes no difference to query the actual or the
very first telegram of the record.
Absolute addresses starts with an index of 1 (first telegram) up to the current
telegram number. A relative address can be -1 (the last or current telegram as
used in the obsolete tg module) or any other negative value. An index of -2
returns the previous telegram (and makes the tgprev obsolete), an index of
-3 accesses the telegram before the previous one and so on.
Since the out() function always handles ONE telegram (one telegram line in
the telegram window) every call, a relative indexing is more convenient because
you don’t have to worry about the right ’absolute’ index number.

telegrams.at(index)

• index: The index of the requested telegram. A positive index counts from
the beginning of the record, a negative counts backwards from the current
handled telegram in out().

Examples

1 function out ()
2 −− query the cu r ren t te legram
3 local te legram = telegrams . a t (−1)
4 −− show the telegram time
5 box . t e x t { cap t ion ="Time " , t e x t =telegram . t ime () }
6 end

The next piece of code calculates the time distance of the current telegram
(index -1) relating to the previous one (index -2). Instead of storing the returned
telegram value as a local variable, we use them directly to access the wanted
information. Here is the code:

147

KAPITEL 13. THE PROTOCOL VIEW

1 function out ()
2 −− show the t ime d i f f e r e n c e between the cu r ren t and prev ious

telegram
3 box . t e x t { cap t ion =" d t " ,
4 t e x t =telegrams . a t (−1) : t ime () − te legrams . a t (−2) : t ime () }
5 end1

13.9 Settings
The settings dialog provides you with several options, i.e. a list of predefined
telegram prefixes (number, date/time, etc.), an individual telegram font, another
background color for the telegram window and a Lua compatibility switch.
Click on Settings→Configure ProtocolView... to open the settings
dialog.

13.9.1 Show additional telegram information
Although you can put any desirable information in front of a telegram by yourself
it’s easier to simply enable or disable the wanted facts just by some clicks.
The prefix settings dialog let you select one or more of the following information
which then are displayed in front of every telegram.

1 Telegram number
This is the actual number of the telegram count from 1 and independent of the
telegram source.

2 Telegram time
The time stamp of the first byte of the telegram relative to the record start in
seconds.

3 Telegram date and time
The absolute time and date of the telegram occurrence. Time and date are
shown in your local time format (depending on your PC settings) with an addi-
tional microsecond part.

4 Telegram duration
This is the length of the telegram in seconds (with microsecond resolution),
measured from the first start bit to the last stop bit.

5 Time distance to the former telegram
The ’pause time’ between the last and current telegram. It is the time between
the last stop bit bit of the former telegram and the first start bit of the current
telegram.

Every selection acts directly on the telegram display.

13.9.2 Change the font
Altering the font effects the display of the boxes. You can choose a smaller font
when you want to see more data in a line or a bigger one for a more comfortable
viewing. Open the settings dialog and click the font icon in the head line.
The font dialog offers you to select an individual typeface, font style and size.

Telegram font
All changes are applied immediately to the telegram window and are stored
automatically.

148

13.10. THE TOOLBAR

Change font via mouse and keyboard

There exists a more directly way to adapt the font size to your preference
without using the settings dialog. Press the Ctrl key and scroll the mouse
wheel. Or just hit the Ctrl+ + or Ctrl+ − to increase or decrease the

font size. Ctrl+ 0 switches back to the default size.

13.9.3 Set an individual background
The template script let you only influence the color settings of the telegram via
the box model. When you like to adapt the background of the whole telegram
window, click the color button and select a color of your choice. This color
becomes the new background.

Background color13.9.4 Lua compatibility
To provide the best possible protocol handling it’s sometimes inevitable to change
Lua functions and names at the expense of downward compatibility. We don’t
do this flippantly and we only break with former versions when the benefits are
outstanding. In such a case we will give you the chance to adapt your own tem-
plates as painless as possible.
The Lua interpreter accepts obsolete functions by default for a while. When
you are willing to update your templates, just disable the compatibility switch
in this dialog. The ProtocolView then points you to all lines in your code that it
cannot accept any longer. See section 13.12.2 for a detail overview about the

Lua compatibility
now obsolete functions and modules.

13.10 The Toolbar
The toolbar serves for a fast access to the most used functions. Some are iden-
tical in all monitor windows, some others are only specific for the ProtocolView.

A End: Saves all settings and closes the window.

B Display mode: According to the mode the window either shows always
the current (last recorded) event or locked or actualizes its content syn-
chronous to the other windows.

C Data direction: The ProtocolView can display both data directions (Port
A and Port B) combined or separately to display them in different win-
dows.

D New view: Opens new window with the same sector and settings.

149

KAPITEL 13. THE PROTOCOL VIEW

E Pin settings: Applies (pins) the current window settings as default setup
when open again.

F Goto Dialog: Opens the goto telegram number dialog.

G Filter control: Select and pass any filter parameter to the current tem-
plate script.

150

13.12. ALTERATIONS TO FORMER VERSIONS

13.11 Short commands

Short commands
for the most important
functions

Action Short command

Online help for the Protocol view F1

Show telegrams in a new window Ctrl + N

Select all telegrams lines Ctrl + A

Reverse selection Shift + Ctrl + A

Export selected lines Ctrl + E

Open goto telegram number dialog Ctrl + G

Increase the current telegram font (zoom in) Ctrl + +

Decrease the current telegram font (zoom out) Ctrl + −

Switch back to the default telegram font size Ctrl + 0

Open the debug output window Ctrl + Alt + O

Close window Ctrl + Q

13.12 Alterations to former versions
We always try to keep the Lua template extensions as compatible as best with
existing versions. Nevertheless sometimes an old design just doesn’t fit any-
more or only can be supported with great effort. This section list all changes
and how you can adapt them to your own code if necessary.

13.12.1 Incompatible changes
With version 5.0.0 the following module names have been changed (mainly for
a better understanding or to correspondent with the Lua 5.3 documentation.

bit→ bit32
cfg→ config
protocol→ transmission

You an either replace the occurrence of every call in your script with the new
name (which is simple by using the find/replace feature of the editor). Or you
assign the new module name to the old at top of your script(s) with:

1 b i t = b i t 32
2 cfg = con f i g
3 p ro toco l = t ransmiss ion

13.12.2 Obsolete functions and modules
The following functions are marked as ’obsolete’ long ago. They are still there
but will be removed finally in one of our the next releases. This section will be
a guidance how to update your templates by replacing obsolete code with the
more powerful new functions and modules10.
In the beginning the list of obsolete modules:

10The protocol templates and examples are already adapted and may serve as a first instance.

151

KAPITEL 13. THE PROTOCOL VIEW

tg - Access the current telegram in function out

tgprev - Access the previous last telegram in function out

hex - Provides a hex ascii to binary/numbers conversions from the current
telegram

box.hexdata - Display part of the current telegram data as hex dump

You may ask what’s wrong with them?
The weakness in the design is the mixup of pure output or conversion modules
(box and hex module) with an fixed telegram access, emphasized as current.
The hex module as well as the box.hexdata can ONLY process the current
telegram. You cannot hex dump a previous telegram and you won’t able to con-
vert hex ascii coded data from other telegrams except for the current one. In
both cases you have to write your own Lua code to achieve a similar functiona-
lity when not handling the current telegram.
Furthermore: tg and tgprev limit the processing in the out function to the
current and previous telegram. As soon as you have to examine more prece-
ding telegrams you are lost.

The new telegrams module put an end to this limitation and provides you
with a random access to all telegrams currently received while executing the
out function. As a logical step the successor of the box.hexdata and hex
module throw off the tg dependency and they are now also capable to handle
arbitrary telegrams.

In the following we will explain how to update the display code of the Modbus
ASCII telegram ’Write Single Register’. The telegram consists of the parts:

: Addr Func RegHi RegLo ValHi ValLo LRC CR LF

1 char 2 chars 2 chars 2 chars 2 chars 2 chars 2 chars 2 chars 1 char 1 char

Except for the starting colon ’:’ and the ending mark CRLF all telegram data
are transmitted in hexadecimal 0-9, A-F (hex ASCII coded). Here an example
byte sequence as shown in the DataView:

3A 30 31 30 36 30 30 31 39 30 33 33 45 39 46 0D 0A

A former solution using the obsolete modules would look like:

1 box . t e x t { cap t ion =" S t a r t " , t e x t = s t r i n g . char (tg . data (1)) }
2 box . t e x t { cap t ion =" Addr " , t e x t =hex . byte { pos=2 } }
3 box . t e x t { cap t ion ="Func " , t e x t =hex . byte { pos=4 } }
4 box . t e x t { cap t ion =" Reg is te r " , t e x t =hex . i n t 16 { pos=6 , order ="BE " } }
5 box . t e x t { cap t ion =" Value " , t e x t =hex . i n t 16 { pos=8 , order ="BE " } }
6 box . t e x t { cap t ion = ’ ’LRC’ ’ , t e x t = s t r i n g . format ("%02X" , hex . byte { pos= tg . s i ze

() −3}) }
7 box . hexdata { cap t ion ="End " , pos= tg . s i ze () −1, len =2 , width =2}

Our first objective is to replace the tg module and to convert the hex ascii
characters (the green and yellow sections) into their binary representation.

1 loca l t e l e = telegrams . t h i s ()
2 loca l bindata = base16 . decode (t e l e : s t r i n g () : sub(2 ,−3))

152

13.12. ALTERATIONS TO FORMER VERSIONS

Line 1 queries the current telegram and assign it to the variable tele which
now contains the same information as when accessing the tg module. But in
contrary to tg the variable could also refer to any other telegram.
In line 2 we pass the section (substring) of the green and yellow bytes starting
with the second byte (index 2) and ending with the third last (index -3) to the
base16 decode function. The result is a binary sequence of the green and yel-
low bytes.
Please note! You cannot convert the whole telegram into binary because the
colon start byte as well as the CRLF are no valid hex ascii characters!

With the binary data at hand there isn’t any further need to convert the different
parts of the telegram like address, function, register, value or LRC checksum
from hex ascii. The function string.unpack11 in line 3 provides a much ea-
sier way to extract the information in one step.

1 loca l t e l e = telegrams . t h i s ()
2 loca l bindata = base16 . decode (t e l e : s t r i n g () : sub(2 ,−3))
3 loca l adr , fnc , reg , val , l r c , pos = s t r i n g . unpack (" bb>H>Hb" , b indata)

string.unpack is instructed to ’unpack’ the given sequence or string accor-
ding to the passed format string "bb>H>Hb". The translated meaning is:

1 return the first character as byte (b) (adr)
2 return the second character as byte (b) (fnc)
3 return the 3th and 4th byte as an unsigned 16 bit value (H) with most significant

byte first (>) (reg)
4 return the 5th and 6th byte as an unsigned 16 bit value (H) with most significant

byte first (>) (val)
5 return the 7th byte as byte (b) (lrc)
6 return ALWAYS the end of the parsing (pos)

At least six results are returned. The last one is always the position where the
unpacking stopped. This is equate to the position where you perhaps want to
continue with another unpack call.
Line 3 simply collects the results in the according variables and we can display
them without any further processing.

1 loca l t e l e = telegrams . t h i s ()
2 loca l bindata = base16 . decode (t e l e : s t r i n g () : sub(2 ,−3))
3 loca l adr , fnc , reg , val , l r c , pos = s t r i n g . unpack (" bb>H>Hb" , b indata)
4 box . t e x t { cap t ion =" Addr " , t e x t =adr }
5 box . t e x t { cap t ion ="Func " , t e x t = fnc }
6 box . t e x t { cap t ion =" Reg is te r " , t e x t =reg }
7 box . t e x t { cap t ion =" Value " , t e x t =va l }
8 box . t e x t { cap t ion ="LRC" , t e x t = s t r i n g . format ("%02X" , l r c) }

The remaining parts are the start ’:’ character and the CRLF end sequence.
The colon is the first byte in the original telegram tele and we can handle it
similar to the obsolete coding. See line 4 in the listing below.
The new telegram:dump function replaces the restricted box.hexdata in
line 10. dump belongs always to a prior assigned telegram and doesn’t access
the tg internally.

11Please note! string.unpack replaced the former bunpack

153

KAPITEL 13. THE PROTOCOL VIEW

1 loca l t e l e = telegrams . t h i s ()
2 loca l bindata = base16 . decode (t e l e : s t r i n g () : sub(2 ,−3))
3 loca l adr , fnc , reg , val , l r c , pos = s t r i n g . unpack (" bb>H>Hb" , b indata)
4 box . t e x t | cap t ion) " S t a r t " , t e x t = s t r i n g . char (t e l e : data (1))
5 box . t e x t { cap t ion =" Addr " , t e x t =adr }
6 box . t e x t { cap t ion ="Func " , t e x t = fnc }
7 box . t e x t { cap t ion =" Reg is te r " , t e x t =reg }
8 box . t e x t { cap t ion =" Value " , t e x t =va l }
9 box . t e x t { cap t ion ="LRC" , t e x t = s t r i n g . format ("%02X" , l r c) }

10 box . t e x t { cap t ion ="End " , t e x t = t e l e : dump{ f i r s t =−2, width=2 } }

154

14
The Signal View

The MSB-RS232 Analyzer samples all signals with up to 16 Mhz
The result displays the signal monitor. Analogous to a digital
scope you can select any part of the record and examine it in
different magnification levels.

For analyzing of serial data streams it is sometimes not sufficient to watch the
transmitted data bytes. The data can be wrong caused by malfunction of the
transmit hardware. You can find an example for a malfunctional hardware in
the demo files. It is a recording of an embedded system where the clock gene-
rator, responsible for generating the baudrate, was disturbed by the harddisc
interrupt and produced baud rates clocks with slight changes (baudrate Jitter).
Therefore the transmitted data bytes sometimes could not be correctly received
and decoded.

Besides the EIA-232 standard there is a multiplicity of further possibilities to
exchange data which are not based on the typical send and receive lines TXD
and RXD only. These protocols do presume a defined change of certain lines.
To judge a (mal)function of these connections the signal client displays the le-
vels of every line over time. The time resolution is 1µs.

All by the MSB-RS232 recorded lines are displayed in parallel, whereby each
line signal can be individually switched on and off and the sequence of their
display can be varied. The function of the signal client is that of a 8 channel
digital scope. In the opposition to a scope the recording depth (Record depth)
and the duration of the recording is limited only by the disc capacity and com-
puting power of your PC.
By opening of multiple signal clients you can check the recorded signals at dif-
ferent places with different time resolution. Aside that the signal client is also
well suited to judge the response time of sent data bytes. In the easiest case
the signal client shows level changes of an active data connection and provides
important hints for the function or malfunction of the connection.

155

KAPITEL 14. THE SIGNAL VIEW

14.1 Signal representation
The signal display is divided into 3 sectors. Directly below the toolbar the cur-
sor bar is located (look Cursor) and the timeline. The timeline provides you
with the exact position and resolution of the visible signal section. To ease the
readout all times displays are shortened by removing unnecessary prefixes. So
0.012570s changes to 12.57ms.
Below the timeline the signals are displayed. For all signals the same sector
and the same resolution applies (time base). To examine a signal at different
positions simply start a new signal client. You can duplicate the actual client
by pressing the ’Clone’ button in the toolbar. By this a new signal client will be
started which has exactly the same settings like the actual one. Or you start a
signal client with default settings from the control program.

Compare different signal sections

Different signal regions can be examined through multiple signal clients.
Just open as many as you want.

Each visible signal is described by its name at the left border. The signal name
is set before the recording in the preference dialog of the control program. The
sequence in which the signals are displayed can be set in each signal client
individually. That makes it possible to arrange important signals directly on top

156

14.2. NAVIGATION

of each other. Unimportant signals can be fade out. All signal specific settings
(including the signal order) are directly accessible via the according signal con-
trol field on the left side, see section 14.5.

Individual signal settings

Signal sequence, visibility, inverting, data overlay and colour are setta-
ble in the according signal control field!

The visible signal region is defined by its position as time difference from the
beginning of the recording and its visible sector. The visible sector is derived
from the size of the window counted in screen pixel and the time base, that
means how many microseconds are displayed per Pixel. The greater the time
base the bigger is the time window of the signal sector.
To get a complete overview over the recorded events click the HOME but-
ton in the top left corner or press Ctrl+Pos1. The Timebase is automatically
choosen so that all events can be seen at the same time. Depending on the
selected time base multiple events could have occurred in one screen pixel.
The signal client draws a vertical line instead of a single pixel to mark this time.
The following image shall make this behaviour clear:

Timebase 0.5ms

Timebase 50µs

Timebase 10µs

All three pictures apply to the same signal, but displayed with decreasing time
resolution.

14.2 Navigation
The scroll bar below the signal windows represents an overview over the posi-
tion and size of the displayed sector in comparison to the complete signal. The
slider size of the scroll bar represents the size, the slider position the offset of
the displayed sector.
Beside that the scroll bar allows to navigate through the complete signal. The
arrows at the left and right border scroll the signal sector in grid or in 10 grid
steps. Or the sector can be moved with the slider. Also the signal can be moved
with the arrow keys, look Shortcuts.
Position and zooming (Time base) are displayed in the two left status boxes.

157

KAPITEL 14. THE SIGNAL VIEW

Below the scroll bar you see a slider, with which you can vary the signal hight
of all signals. Normally you will not need this function. It is useful if you can not
read the displayed name of a Region when it is hidden by the signal. In this
case simply decrease the signal hight.

14.2.1 Navigation and zooming by mouse wheel
You can zoom the signal (changing the time base) around the mouse position
by turning the mouse wheel with a pressed Ctrl key.
Turning the wheel without a pressed key shifts the signal one grid to the left or
right - depending on the turning direction. Pressing the Shift key while turning
the wheel moves the signal in 10 grid steps.

14.2.2 Shift with the hand cursor
The hand cursor allows the pixelwise shifting of the signals. click on the hand
symbol in tool bar. The cursor changes to a hand symbol. To move the signal
to the right or to the left simply grip the signal by pressing the left mouse key
and drag the signal in the desired direction. Keep the mouse key pressed. while
gripping the signal the cursor has the look of a griping hand.

14.3 The time base
The time base correspondends to the magnifying for the represented signal.
The smallest time base is 10µs, that means 10 microsecs per raster and means
1µs per displayed pixel. One raster grid is 10 pixel wide. The signal is magni-
fied, for a screen resolution of 1024 it is about 1 millisecond (if you have maxi-
mized the signal monitor window).
If the level changes are in the millisec or second range you will chose a higher
timebase to watch a larger section of the signal. By clicking of the two magnify-
ing glass symbols in the toolbar the time base is set to the next higher or lower
value. The same can be done by using the key combination Ctrl+Up Arrow and
Ctrl+Down Arrow.
You also can magnify a certain sector of the signal by selecting the sector with
a pressed left mouse key. Move the mouse cursor to the beginning of the sector
and press the left mouse key. Hold the key pressed and move the cursor to the
end of the section. A rectangle marks the current selection. As soon as you
release the mouse key the section is displayed magnified.

14.4 Undo and Redo
All magnifications can be taken back (undo) or redo after an undo.
By that you can magnify an interesting signal section, for example to place a
cursor exactly, and go back to the original view, simply ba clicking on the undo
symbol in the toolbar or entering Ctrl+Z.
The original view before an undo is recalled by redo. Both symbols are marked
as inactive if no further undo/redo steps are possible. Undo and redo are used
only for section magnifying. A normal increasing/decreasing of the signal is
possible at every time so that no undo redo is necessary.

158

14.5. SIGNAL CONTROL FIELD

14.5 Signal control field
Every displayed signal comes with its own control field on the left side. With
version 5.0 this field replaces the former signal settings and gives you a fast
and easy access to all signal relevant properties. Here you can remove a signal
(you can add it again in the settings dialog), chose a different colour, add a data
overlay and invert the signal. All this just by a simple click.
You can even rearrange the top-down signal order by drag and drop a certain

Signal control field

control field above or below the adjoining fields.
If the height of the signal channel is to less to show all signal settings properly
(in case you reduced the window height), a click on the signal color button
opens an according little dialog where you can do all the settings which are
otherwise provided by the bigger control field. The dialog is shown on the right
margin side.

Signal control dialog

14.5.1 Remove or hide a signal
You can remove a signal from displaying - for instance if the sampling of this
signal was disabled during the record or if you just not interested in the signal -
simply by clicking the close button X in the according control field. The record
is not influenced and you can retrieve the signal display again in the settings
dialog, see 14.6.

14.5.2 Signal colour
The SignalView defines eight different colours for every signal which fit best
with the used colour theme. But you can chose your own colours at any time
by left-click the colour bar in the control field.
The opening dialog presents the familiar OS colour dialog where you can select
a predefined colour or create a new one.

14.5.3 Data overlay
You can overlay the signal with the data from channel A or B. The SignalView
calculates the frame of the data (the time between the start and stop bit) and
shows every data frame including its hex value in a translucent rounded box.

Data overlayThe rounded box corners serve as an orientation where the data frame from
the analyzers internal timing measurement begins and ends. If it is different to
the tri-state signal lines it indicates a problem in your (application) transmission
setup.

159

KAPITEL 14. THE SIGNAL VIEW

14.5.4 Invert signal
You can invert every shown signal individually by activate the Inv checkbox
in the control field. This only reverse the signal display and does not affect
the recorded data. But it is nevertheless sometimes useful if you are unsure
about your bus connection and want to check it for instance with the integrated
transmission frame ruler, see 14.8. You can invert the signal physically with the
optional available SwitchOption.

14.5.5 Rearrange signal order
Rearranging the signals to your preferred order is easy and intuitive once you
have seen (or read) it. Just left-click and hold the name in the control field you
want to move. Then drag the name to one of the control fields above or below
and release the mouse button.
Dragging a signal control field to a upper field puts the dragged signal above
that signal. If you release the mouse on a field below, the signal is put directly
under this.
The name of the dragged signal is attached to the mouse pointer as long as

Rearrange signals
via drag and drop

you keep the left mouse button down.

14.6 Settings dialog
You will most probably use the settings dialog to enable a hidden signals again.
But the dialog also serves for some other common settings which affects all
signals. For instance the general colour scheme and several transparency ef-
fects. Both setting groups are accessible in two separate tabs.
Please note! There is no ’Apply’ button. All you changes have a direct effect to
the signal display.

14.6.1 Common settings
The common settings cover - first at all - the on/off switches for all signals. Here
you can enable a former maybe unintentional removed signal again.
The remaining controls of the dialog are used to adapt the colour settings com-

Common Settings
and colour themes

mon to all signals. These are the background colour, the grid colour and also if
the grid is visible or not.
And we have the colour themes selector!
The SignalView offers two colour themes. A ’Classic theme’ which dyes back-
ground and grid similar to the older software releases.
And the new ’Dark theme’ which gives the SignalView a modern digital scope
like appearance with best fitting signal colours and discreet grid. But at least it
is you choice.
If you are not happy with the themes, you can use an individual background
and grid colour and adapt the signal colours as you like.
Future versions will come with more themes and - perhaps - let you create your
own themes.

14.6.2 Graphical effects
The SignalView uses transparency effects for a better user experience. But the
grade of transparency is as usual of individual taste. Thus this second setting
tab. There are three different transparency parameter:

160

14.7. CURSOR OPERATING

Selection: Specifies the transparency of a mouse selection. A low transparen-
cy makes the selection more brighter but the signal behind less discernible.
Regions: The translucency of the regions. The same applies here. A medium
transparency is a good adjustment.
Data Overlay: Let you fade in and out the data overlay. A low transparency
conceals the underlying signal, a high value fades out the data overlay at all.

Graphical Effects
for translucency

14.7 Cursor operating
Every signal client owns 2 Cursors I and II which can be moved arbitrarily over
the signal inside the visible range. To move a cursor click on the respective cur-
sor symbol, an upside down triangle above the timeline, and draw the cursor
line to the wanted position. If both cursors are on the same position you can
see only the last activated one because it overlays the other cursor. But in this
case always Cursor I will be activated. To move the second cursor keep the
SHIFT button pressed while clicking the cursors. Now you can move cursor II
while Cursor I stays at its place.

Cursor selection

With pressed SHIFT key the second cursor is activated if both cursors
are at the same position!

Placed cursors keep their signal specific position even if you choose another
signal view. Cursor outside the visible signal window are displayed at the left
or right border. Their actual position can be read in the status line. c1 means
cursor I and c2 cursor II.
In addition to the position of each cursor their time difference is fade in in

the status line. So a time difference measurement is easily posible, e.g. the
duration of an active line.
To compare multiple sectors you can assign the marked signal sectors to a
region. Click the ’Add Region’ Button in the toolbar. A maximum of 8 regions
can be defined. The range between both cursors gets colored. Read more
about regions in chapter Regions.
You can also move both cursors at the same time, for instance to compare
the duration of two signal changes which did not occur at the same time. Both
cursors are connected by pressing ’c1+c2’ in the toolbar.
As long as this key is activated both cursers are moved simultaneously, all the
same which one you move.

14.7.1 Signal selection
The sector between both cursors represent the current selection at any time.
You do not have to make another selection. Since both cursors do not change
their position in relation to the signal, the position and distance beween them
stays the same, even if the signal view is changed. Both are displayed in the
status line.
All operations, which are related to the current selection, always concern the
signal range between both cursors.
To define a region click on the ’+’ Symbol in the toolbar or press Key F4.

161

KAPITEL 14. THE SIGNAL VIEW

14.7.2 Regions
The SignalView displays regions as transparent overlays in different colours.
The following image shows two regions, where the right blue one is framed
by the two cursors and assumedly selected by them. Because regions are su-
perordinated and valid for all analysis windows, selected signal sectors can be
marked and examined with different tools at the same time.

The red-yellow triangle in the cursor bar is the current Synchronizing Event,
received from another analysis window. It indicates an synchronizing with the
two byte transmission in the left region.
Every region may have its own name. Here the left one is states as ’Slave
ACKN’ and the right as ’Master POLL’. The example is picked from a DF1 trans-
mission. You can find more information at P.167.

14.8 Measure data frames with the frame ruler
When examining asynchronous transmissions, you sometimes need a closer
look into single data frames. For instance if you want to check the transmitted
parity bit, the correctness of the data frame between start and stop bit or if you
suspect a diverging clock by the sender.
In asynchronous transmissions the bus participants synchronizing their internal
data clock for the data sampling with the falling edge of the start bit. The data
clock divergence between sender and recipient must not exceed 2% for both
otherwise you will see unexpected bytes. Depending on the parity settings such
an error must not automatically lead to a parity or frame error and the reason
is difficult to find without an examination of the data frame itself.

To make life easier, the SignalView comes with an integrated and so called data
frame ruler, see picture below. You can imagine this ruler like a measuring tape
with a start mark, marks for every data bit (as adjusted), a mark for the parity
(if configured in the transmission) and at least a mark for the stop bit.
By default the ruler takes the record settings for it’s appearance.

The example picture shows a ruler for a data frame format of 8E1 which means:
1 start bit (green), 8 data bits (alternating yellow and dark grey), an even parity
(blue) and 1 stop bit (red). The ruler also indicates the sample position for every
bit as a vertical line in the center of every field.

162

14.8. MEASURE DATA FRAMES WITH THE FRAME RULER

You can assign the ruler to a signal by selecting the appropriate signal name in
the frame ruler selector (below the horizontal scroll bar).

Afterwards you can move the ruler to the falling edge of a data frame by drag-
ging cursor 1 as described earlier. The falling edge is indicated by the overlaid
data value (here D3) or the beginning of the displayed data frame (the dark
cyan area in the picture).
The lowest bit starts immediately after the green start bit. Here we see a bit
sequence of 11001011 which is hex D3 (low bit first). The number of high bits
is 5 and odd, thus the parity bit is 1 to get an even number of high bits as
shown. The stop bit must always 1 which is also correct. Even the clock wide
is precisely maintained by the sender.

In case of a different data clock, every bit in a frame (after the start bit) will be
start slightly earlier or later which - depending of the difference - added up to
an intolerable shift. The recipient will assign the signal level to the wrong bit
and the resulting data will calculated wrong. In the picture below a transmitted
byte expected as hex 20 becomes hex A0 and the stop bit is false.

14.8.1 Adjust the data frame ruler
You can adapt the frame ruler to other data frame parameters or a different
baud rate in the frame ruler dialog. The dialog appears when you click the Set
button on the right of the frame ruler signal selector.
The ruler dialog (see picture in the margin) let you choose a different baud rate
or set the ruler clock/bit width to the tolerable minimum or maximum rate. You
can also select a different number of data bits or parity. The made adjustments
are applied immediately to the ruler in the signal. With it you can easily de-
termine if a certain byte frame is within the specifications or not. And what bit
rate is really used in the data frame without measuring single bit widths. In our

Ruler dialog
adjust the frame ruler

example we find a fitting baud rate at about 20600.

163

KAPITEL 14. THE SIGNAL VIEW

14.9 Synchronizing
Each analysis window can synchronize its view with others.
How the signal monitor acts on receiving of the sync signal from other analysis
tools depends on the sync selector in the toolbar, identical for every analysis
tool.
By default, the display of the signal monitor is locked, it does not react on

Synchronizing
other views with cursor

change commands from other tools. Click on the ’Sync’ symbol and a red-
yellow triangle appears in the cursor bar which marks the position of the current
synchronizing event.
If you switch on the ’Scroll’ Symbol the signal monitor always shows the last
event resp. level change.
The signal monitor not only reacts on sync-changes from other tools but can
also trigger a sync event itself... For that click in the signal view the right mouse
key (context menu) to open the sync. menu. The entries are more or less self
explaining.

1 Synchronizing on Cursor 1
Synchronized is on the first event after the cursor 1 position.

2 Synchronizing on Cursor 2
Synchronized is on the first event after the cursor 2 position

3 Synchronizing the display
As the synchronizing event the current signal sector is used. That means the
first level change seen from the left border.

Why is the first event after the cursor position used and not the cursor position
itsself?
Synchronization is only on events not on a certain time in the signal. As the
cursor can be between two events (in contrary to other tools) the next following
event has to be taken for synchronization.

14.10 The toolbar
The toolbar serves for a fast access to the most used functions. Some are
identical in all monitor windows, some are specific for the protocol monitor.

A End: Save all settings and close the signal monitor window.

B Display mode: According to the mode the window either shows always
the current (last recorded) event or locked or actualizes its content syn-
chronous to the other windows.

C New view: Opens (clones) a new window with the same signal section
and settings.

164

14.11. SHORT KEYS

D Pin settings: Applies (pins) the current window settings as default setup
when open again.

E Mouse control: Optionally the mouse can be used to zoom the selection
or to move the signal (hand symbol).

F Signal zooming: Magnifies or demagnifies the visible section in 1, 2, 5
multiplicative factors by choosing the next lower or higher time basis.

G Undo/Redo: Undoes the last change of the visible section or restores it
respectively.

H Add region: Saves the range between both cursers as a new region.

I Interlock Cursor: The cursors can be selectively moved singly or to-
gether (combined).

J Show region dialog: Opens the region dialog, e.g. to fade in or off re-
gions, to delete them or to name them.

14.11 Short keys

Short commands
for the most important
functions

Action Short command

Online help for the Signal View F1

Undo last selection/zooming operation Ctrl + Z

Redo last selection/zooming operation Ctrl + Y

Add range between cursors as new region F4

Move view 1 grid step towards signal end Right arrow

Move view 1 grid step towards signal start Left arrow

Move view 10 grid steps towards signal end Shift + Right arrow

Move view 10 grid steps towards signal start Shift + Left arrow

Move signal horizontal 1 grid step Mouse wheel

Move signal horizontal 10 grid steps Shift + Mouse wheel

Zoom in signal Ctrl + +

Zoom out signal Ctrl + −

Zooming in/out at mouse position Ctrl + Mouse wheel

Signal total view Ctrl + Home

Jump to first event Home

Jump to last event End

Open in a new window Ctrl + Shift + N

165

KAPITEL 14. THE SIGNAL VIEW

Close signal view Ctrl + Q

166

15
Regions

To save and quickly recover interesting areas in the recorded
data these areas can be marked as regions. Regions are present
in all views so that a region, marked in the data monitor is shown
in SignalView too. Regions can directly accessed.

Regions are selected Ranges which are shown in all analysis windows. Each
window can define a selected range as a region and make it available to other
windows. Since the different analysis tools represent different kinds of data
views each region can be defined in a different way. A region can be defined
in the signal monitor as a range between both cursors, in the data monitor as
a certain data sequence or as the occurence of single characters and in the
protocol monitor simply by adding a single telegram or a selection of telegrams
as a new region.
Regions are acting like bookmarks of interested sections in your record. As

Regions Dialog

soon as a region is listed in the region dialog, you can jump to the start or end
of that region just by clicking the start or end property in the region.
This interaction is interesting if you want to examine a defined section in a
different view, for example the physical signal state (signal monitor) of a data
sequence (data monitor).
The MSB software allows the definition of 8 regions. Every region can be indi-
vidually named and optionally switched on and off. With exception of the line
state monitor you open the region dialog with View→Region dialog in every
analysis window. An always opened region window will be put in front of all
windows automatically.

The right picture shows a region dialog with all together 8 regions where the
regions 3 (magenta) and 7 (cyan) are folded in. All regions are visible (the
Visible property is set to 1).

15.1 Switch regions on/off
Each region can be individually fade in or out. This is reasonable if some regi-
ons overlap in the display and make an assignment difficult. To alter the visibility
condition of a region simply double click the according Visible property.
A shown region is indicated by a value of 1 whereas a hidden region has a 0
value.

167

KAPITEL 15. REGIONS

15.2 Remove a region
To delete a region from the region dialog, just click/select the region name and
press the Del button on your keyboard. You must confirm the deletion before
the region is finally removed from the list.
To delete a region does not alter the record. It only removes the region infor-
mation. It is like to remove a bookmark from a book. This too does not remove
any pages.

15.3 Rename a region
Regions are by default named in the order sequence of their creation as Regi-
on1 to Region8. But you can choose a more self-explanatory name by double
click the name and input a text of your own.
A Region name can contain any character but they are limited to a maximum
length of 200 characters. Of course labels of such a length don’t make sense.
A better place for additional information or remarks for a region is the comment
property1.

15.4 Move regions into view
Certain segments of the recording are marked as region because they are im-
portant parts. Of course you want to bring them fast and easy into the visible
part of your analysis windows, e.g. the signal or data monitor.
Possibly you want to compare two regions.
Therefore the region dialog supports the same mechanism for synchronization
like the other analyis windows with the exception that it can initiate the synchro-
nization only. Select the appropriate region and click on the start value to bring
up the start of the regions in all analysis windows with activated synchronizati-
on. Or click on the end value to bring up the right limits of the region.
Please note: Only those analysis windows will react which have enabled the
synchronization by other views active.

Fetch regions into views

Regions can easily be brought into the visible range of an analysis win-
dow by a click onto the start or end value with the left mouse key. The
display mode of the according program window or view must be set to
synchronous mode!

15.5 Region storage
Regions are part of a record (msblog file) and will be automatically stored
when you are saving a record or project. The software will warn you about
unsaved regions on program exit or when you start/load a new record to avoid
data losses.

1Remarks will be supported in one of the future versions

168

15.6. REGION PROPERTIES

15.6 Region properties
Below is a summarized list of the several region properties. All properties are
clickable except for the range property which has only an informal usage.

Property Meaning

Region name Editable region name

Visible 0: Region is hidden in views, 1: Region is displayed by views.

Start The region start relative to the record start in seconds. A click cau-
ses synchronized views to display the beginning of that region.

End The region end relative to the record start in seconds. A click cau-
ses synchronized views to display the end of that region.

Range The region range in seconds (not clickable).

Comment region description, not yet supported.

169

KAPITEL 15. REGIONS

170

16
The Editor

Starting with version 5.0.0 Lua becomes a more and more
important part of the whole Serial Analyzer software. The
benefits of a very adaptable script language for protocol
templates has been fully transferred to the DataView, allowing
the processing of the raw data by Lua already accustomed in the
ProtocolView.
An external, full equipped editor was the logical consequence.

The editor integrated into the Serial Analyzer software is not only especially
designed for writing Lua code, it also features all kind of qualities you expect
from a good editor like code folding, syntax highlighting, multi-doc interface,
unlimited undo/redo and more.

171

KAPITEL 16. THE EDITOR

To make scripting as easy as possible the editor further scores with automatic
code frameworks depending whether you write a protocol template, a script for
the DataView or a module used by both of them.

16.1 Open the editor
The editor is invoked when pressing the New/Edit in the DataView or Proto-
colView. It pops up either with the currently selected dialog script or shows the
script in an additional document tab.
The latter let you open several scripts at the same time, e.g. to compare parts
of different scripts or copy and paste certain code sections between them.
To distinguish between scripts for the Data-, ProtocolView or a module, the edi-
tor script tabs are showing different colours. This helps also to differ scripts with
the same name but used in different kind of views.

DataView scripts are displayed with a cyan box, protocol templates with a
magenta box and a yellow box indicates a module script file.
Script files with unsaved modifications are marked with a little ’∗’ in the tab. You
can close a file by click on the x in its tab. If the file is modified, you will get
a warning. The editor (or the MSB-Analyzer program) will never ends without
informing you about open changes and asking you how you will proceed.

16.2 Start with a new script

Script Wizard

In contrary to former versions, new scripts are now solely created in the editor
itself. This avoids doubled edited scripts for instance in two concurrently run-
ning ProtocolViews.
In case of a new script the editor asks you what kind of script you want to edit
and provides you with an according code framework.
The new script then is shared with all Views which are using the same template
or DataView watch script.

Select a new created script

Please note! A new created script file is not selectable by a view until
you have saved it in the editor.

16.3 Interactive coding
As an firmly integrated part of the MSB-Analyzer program the editor is intended
to interact with the linked views automatically. In particular to trigger the upda-
ting or redrawing of a telegram display in the ProtocolView or the watch dialog
in the DataView when saving the according Lua script. As simple as it is, it ma-
kes the coding of protocol templates or the processing of data in the DataView
an amazing experience.
As soon as you save an edited script in the editor which is also selected in a

172

16.4. HIGHLIGHT INDIVIDUAL KEYWORDS

DataView or ProtocolView the views are updating automatically their window
content - applying you last script modifications. Just click the save button in the
toolbar or press CTRL+S and - voila - the views refresh the display.

16.3.1 Lua script errors
We need to differentiate between common Lua errors like wrong keywords (for
instance input functns instead of functions), module errors (calling a mo-
dule function not available for the given View) and run-time errors. The latter
only occurs during execution time like dividing by zero or accessing a nil (inva-
lid) variable content.
The editor itself does not check or evaluate the edited scripts. This is in the
responsibility of the View which executes the script. Therefore errors are not
shown in the editor but in the view which display an error with detail information
about the cause and script line.

16.4 Highlight individual keywords
Lua scripts, especially protocol templates could become quite extensive and
the programmer will be thankful for every help to make code reading easier.
One proven method is the syntax highlighting. The editor extends its ability of
highlighting Lua keywords by let the user assign individual words as a space
separated string to the variable __EDITOR_KEYWORDS__. The new keywords
then are displayed too in a different colour.
You can also cover this assignment in a comment because the editor only parse
for a: __EDITOR_KEYWORDS__="keyword1 keyword2 ..." pattern which
we strictly recommend to avoid side effects.
The following picture shows the result of

__EDITOR_KEYWORDS__="ACK DLE ENQ EOT ETX NAK SOH STX"

in the DF1 template.

16.5 Find

Find dialog

Looking for a certain piece of code or text often depends on other facts. You
want to find only matches for entire words or that the results are equal in upper
and lower case letters. You like to search backwards and wrap around.
The MSB-Analyzer editor provides you with a simple but nevertheless powerful
search functionality. Just click the find icon in the toolbar or press CTRL+F to
start the find dialog.
The dialog keeps your settings during a session.

173

KAPITEL 16. THE EDITOR

16.6 Find and replace

Find & replace dialog

It’s the usual business of a programmer to rename a certain variable after
rethinking the meaning of it. The MSB-Analyzer editor offers you a powerful find
and replace dialog which let you replace a given text step by step as well as
in one go. A step by step approach is especially helpful if you like to check
the replacement first before you want to apply it. Here you can jump from text
passage to text passage and switch the text by your choice.
The dialog supports all settings of the find mechanism and remembers all your
inputs during the program session. This makes it easy to repeat a former re-
placement later.
You can open the find and replace dialog by clicking the according toolbar icon
or press CTRL+H.

16.7 Code folding
Code folding is a nice feature when your script consists of a lot of functions or
other code blocks like tables. Activated in the toolbar it collapse every function
into their very first code line. In case of a function, it’s the function definition or
name. Tables collapse into the first line of the table code.
Every folded code block is headed by a + on the left editor margin. You can
fold or unfold only certain functions/blocks or apply the folding to every block in
your script by clicking the icon in the toolbar.

Find and replace with folded code

Folded code is not ’visible’ for the find dialog, but replacing ALL occur-
rences of a given text with another one affects also collapse code lines!

16.8 Editor settings

Settings dialog

The editor is adaptable to your own preferences via the settings dialog. You can
change the behaviour of the editor (show/hide line numbers, preset the tabu-
lar size, highlight the current line), change the font (default is the system fixed
width font) and the colour scheme.
The editor comes with two colour themes. A classic theme with a white back-
ground and a dark theme for users preferring an editor with a light typeface on
a dark background.
All changed settings are applied automatically and saved for the current sessi-
on when closing the settings dialog.

16.9 Colour wizard
Especially the ProtocolView uses different colours to illustrate telegrams. But
also the DataView allows colours to mark certain data sequences. Colours are
specified by a RGB (red, green, blue) value. In Lua as an integer value like:
0xRRGGBB where RR, GG and BB representing the red, green and blue part
as a hex value of 00...FF. A pure red colour for instance is defined as 0xFF0000.
Choosing the right colour only by vary the number is boring. The editor therefo-
re provides a colour wizard (or colour chooser) which let you select the colour

174

16.10. SCRIPT FILES LOCATION

and insert the right Lua value at the cursor position afterwards.
You can open the colour wizard in the toolbar or by pressing CTRL+Alt+C.

16.10 Script files location
All script files are located in the users application data folder by default. Under
Linux this is:

~/.IFTOOLS/SerialAnalyzer/7.0.2/Templates/

Under Windows:

C:\Users\USERNAME\AppData\Roaming\IFTOOLS\SerialAnalyzer\7.0.2\Templates\

The Templates are organized in different directories according to their view
belonging. So there is a ProtocolView, a DataView, a Trigger and a Module
directory. You will also see a SwitchEditor folder, but this one only contains dra-
wings and no scripts.
You can save a script on a different location, for instance if you want to share
it with other peoples or use it in another application. The best way is to use
’Save as copy’ in the file menu. But note! Views can only ’process’ a script in
their default location because it is the only place where they looking for new or
modified scripts.

Script location

The DataView and ProtocolView require the scripts in their default loca-
tion otherwise they wont see new files or react to modified scripts!

16.11 Editor short keys
The usage of the editor is as simple as possible. All editor functions are acces-
sible from the toolbar or via a right mouse click (selection, copy, paste, ...). A
few short keys are nevertheless worth to remember, since it spares you some
additional mouse clicks.

Short keys
of the most important
functions

Action Short key

Copy the selected text into the clipboard Ctrl + C

Opens the find dialog Ctrl + F

Opens the find and replace dialog Ctrl + H

Toggle the folding of all code blocks ALt + T

Create a new script/document Ctrl + N

Load a script file into the editor Ctrl + O

Save the current script/document and trigger a view upda-
te

Ctrl + S

175

KAPITEL 16. THE EDITOR

Save the current script/document under a new name Shift + Ctrl + S

Paste the text in the clipboard at the current cursor position Ctrl + V

Cut the selected text and copy it into the clipboard Ctrl + X

Redo last undo Ctrl + Y

Undo last modification Ctrl + Z

Increase the current editor font (zoom in) Ctrl + +

Decrease the current editor font (zoom out) Ctrl + −

Increase or decrease the editor font via the mousewheel Ctrl+Wheel

176

17
An introduction to Lua

Lua is one of the fastest scripting languages in the world.
Because of its small and simple design it’s also easy to learn.
Lua contains a few but also very powerful concepts which makes
it the first choice to add the benefits of a scripting language to the
analyzer software.
This chapter will give you a first glimpse of the language and how
it fits with your analysis.

17.1 Getting started
Lua is a programming language that offers a very impressive set of features
while keeping everything fast, small and simple. In the analyser software we
are using Lua version 5.3. So lets go to learn a little bit more about this amazing
scripting language.

Lua Version 5.3

You can test all the following examples by yourself. Just start the analyzer ap-
plication and open the Lua script editor in the control program by clicking the
’Open Lua Script Editor’ in the ’Views’ menu. You do not need a connected
analyzer device.

The Lua script editor allows you to execute little code pieces just by select the
desired line and press SHIFT + F5 . You can even execute a complete script
buffer simply with F5 . Code evaluation works in all opened files. But the edi-
tor provides you with a special *SKETCH* buffer which let you play with code
snippets without modifying existing scripts.
The content of this buffer is automatically saved when closing the buffer or edi-
tor and restored when you open the sketch buffer again.

The most descriptions of a new computer language just begins with the tradi-
tional "Hello World". To keep the tradition, our first script will do the same.
So open the sketch buffer in the editor Lua menu and input the following line:

1 p r i n t (" He l lo World ")

Press F5 . The editor opens the evaluation output window and gives you a
friendly Hello world greeting.
The Lua print function is intended as a quick way to show a value, typically
for debugging or testing. It receives any number of arguments separated by a

177

KAPITEL 17. AN INTRODUCTION TO LUA

comma and prints their values to the Lua output window whereas every result
is separated by a tab character. For example:

1 p r i n t (" Resul t o f 1 / 3 " , 1/3) −−> Resul t o f 1/3 0.33333333333

Here we pass two arguments to the print function. The first is a string enclo-
sed in double quotes, the second is the result of an arithmetic statement. Lua
handles all numbers as floating point numbers by default (see page 186). So
the result is a real number and not an integer.

The print function can also serve as a simple one line calculator. Since Lua
allows the input of hexadecimal values it also works as a number converter.
Consider the following lines:

1 p r i n t (0xFFFF * 2) −−> 131070
2 p r i n t (s t r i n g . format ("%x " , 123456) −−> 1E240
3 p r i n t (s t r i n g . format (0xFFFF ~ 0x3000)) −−> CFFF

Lua accepts hexadecimal numbers by adding a leading 0x to the number as
shown in Line 1. The output is always decimal but you can use the string format
function to manipulate the output format. This function works as similar as the
printf in C/C++.
Line 2 uses the unsigned hexadecimal notation "%x"to display the output with
radix 16.

If you ask yourself: What means the point between string and format?
Lua provides all generic functions for string manipulations in a separate library
or module. To access a library function you must call it with the leading library/-
module name separated by a dot before the function name.

Line 3 introduces the ’exclusive or’ bit operator which in Lua is the tilde symbol.
Lua supports all bitwise operators you may know from other languages since
version 5.3. For more information about the built-in bitwise operators, please
see page 196.

17.1.1 Using functions
print is a built-in Lua function (beside many others). You can add your own
functions at any time and call them afterwards in the script or sketch buffer. For
more details about functions see page 199. Now let us extend our ’hello world’
example with a greeting function.

1 function gree t i ng (tex t , name)
2 p r i n t (t e x t . . " " . . name)
3 end
4
5 gree t i ng (" He l lo " , "Bob")

Input the function and the calling line 5 in the editor sketch buffer and press
F5 to execute the buffer.

The function greeting gets two arguments, the greeting text and a name. In
the function body both arguments are put together with the Lua string conca-
tenation operator .. (see page 197). Here we take the greeting text, add a
whitespace and the name which gives us:

Hello Bob

178

17.1. GETTING STARTED

17.1.2 Function with multiple results
The greetings function does not return a result. It just prints out the jointed
arguments. But Lua functions can return any number of results, see page 199.
Imagine a function which divides two integer and returns both, the quotient and
the remainder1.

1 function d i v i d e (d iv idend , d i v i s o r)
2 local remainder = d iv idend % d i v i s o r
3 local quo t i en t = (d iv idend − remainder) / d i v i s o r
4 return quot ien t , remainder
5 end
6
7 p r i n t (d i v i d e (10 , 3)) −−> 3 1

We first calculate the remainder using Lua’s module operator % in line 2. Since
Lua handles all numbers as floating point numbers we cannot simply divide the
dividend by the divisor which will give us 3,3333333333333.
Instead we first subtract the remainder from the dividend in line 3 before the
division to get an integer result for the quotient.
The keyword local in line 2 and 3 limits the scope of the variables remainder
and quotient to the surrounding code block, here the function divide, see
page 195.
Line 4 returns both results separated simply by a comma.

17.1.3 Processing and manipulating strings
Lua strings can contain any byte value. The length of a Lua string is not spe-
cified by a certain character. You don’t have to struggle with null bytes as in
C/C++ for instance. And: With Lua you can mix strings and numbers in a very
easy and intuitive way. This makes Lua strings the ideal data type to build and
represent protocol telegrams.

Take a look at the following string example:

p r i n t (s t r i n g . dump(" \000 \001\255\128")) −−> 00 01 FF 80

You can add any byte value to a Lua string by input it’s decimal value with a
leading backslash. In the example we start with a null byte followed by a bina-
ry 1, 255 and 128 value. The dump function is an extension to the Lua string
library provided by the analyzer software. It outputs the content of a string in
hexadecimal notation (amongst others) and is very helpful when validate the
result of own created telegram strings.

In our next example we consider a little checksum function.
Most field-bus protocols specify a checksum to validate the correctness of a
transmitted byte sequence. A simple checksum algorithm is the modulo 256
sum of a given data sequence2. The function (line 1...7) looks like:

1 function Checksum (data)
2 local chksum = 0
3 for i =1 ,# data do
4 chksum = chksum + s t r i n g . byte (data , i)
5 end
6 return chksum % 256

1This is just an example and works for positive integer arguments only!
2As optionally used in IEC60870-5-103

179

KAPITEL 17. AN INTRODUCTION TO LUA

7 end
8
9 p r i n t (Checksum (" h e l l o wor ld ")) −−> 92

Input the lines above in the editor sketch buffer and press F5 . This calls the
checksum function with the data sequence or string "Hello world" in line 9,
the result is 92.

How does it work?
In the function body we create a local variable chksum and initiate it with 0.
In line 3 we iterate over all bytes in the passed data (string) argument.

Please note! In contrary to other programming languages Lua indexes in tables
(arrays) and strings starts always with 1.
The # character is defined as the length operator. It returns the length of a
string or array. For example:

p r i n t (#" h e l l o wor ld ") −−> 11

returns 11.
Line 3 in our example therefore counts i from 1 (the first byte in the given data
sequence) to the last byte.
You can access the numeric code or value of every byte/character in a string
with the string related function string.byte(i)3.

In line 4 we add up the numeric values of all bytes in the passed string. An
alternative way to call the sub function is:

chksum = chksum + data : byte (i)

Lua uses the colon operator to provide a special syntax for object oriented calls.
The colon in the expression data:byte(i) tells Lua to call the byte(i) me-
thod of the string variable or object on the left side of the colon4. Therefore it
must not passed as an argument to the sub function. If you are familiar with
object orientated languages like C++ or JavaScript consider the colon in Lua
as the normal dot in these programming languages when accessing an object
method.
Line 6 at least returns the lowest 8 bits by returning the modulo 256 of the
chksum variable.

A checksum is added to the transmitted data sequence usually at the end. If
you want to verify the checksum of a given telegram you therefore must cal-
culate the checksum from all (or a part) of the data sequence except for the
checksum itself. This means: You must pass a certain section of the data se-
quence to the checksum function.

Lua provides you with a mighty sub string mechanism which makes it especi-
ally easy to extract any part of a string. Because it uses negative indexes for
backwards counting you can even query the last 2 bytes without knowing the
string length. The following examples will give you an idea how it works.

3This is a simplification. The byte method accepts a second index too and returns an array
(table) of the specified range. The second index is set to the first by default.

4The variable type of the left side of the colon must be a string, otherwise you will get an error.

180

17.1. GETTING STARTED

1 seq = " He l lo wor ld ! "
2 p r i n t (s t r i n g . sub (seq , 7)) −−> world !
3 p r i n t (s t r i n g . sub (seq , 1 , 5)) −−> Hel lo
4 p r i n t (s t r i n g . sub (seq , −6)) −−> world !
5 p r i n t (seq : sub (−6, −2)) −−> world

The string method (or function) sub is called with three arguments:

s t r i n g . sub (STRING, FROM, TO)

whereas TO is optional and set to the string end by default.

Line 1 returns the sub string from position 7 (the ’w’) to the end (by default).
Remember that Lua counts indexes strings starting with 1.
Line 2 returns the first 5 characters as a string (from 1 to 5).
In line 3 we select the sub string by counting from the string end. -1 means the
last character, -6 the ’w’ again.
At least line 4. Here we use the object oriented syntax and limit the end to the
second last character by passing the end position as -2.

The function sub is part of the string module. Lua strings can represent all data
or telegram content as long as the data width is 8 bit or less.

17.1.4 Data structures in Lua
Protocol specifications often define numeric constants with a certain meaning.
These are status or error states or command values like the function numbers
in a Modbus transmission. Basically spoken these are key/value pairs. The key
is the numeric value of an error, state or command and the value is a string
describing its meaning. Imagine a digital input returning 0 or 1 but you want to
see an OFF or ON.
To get the according string (the description) you can write a Lua function like
this:

1 function GetD ig i tS ta teTex t (s t a te)
2 i f s ta te == 0 then
3 return "OFF"
4 e l s e i f s ta te == 1 then
5 return "ON"
6 end
7 return " "
8 end

This works well for small numbers of states. But consider you have a lot of error
codes. Growing if...elseif constructs quickly become illegible.
In computing, key/value pairs are stored in so called associated arrays whereas
a key works as an index in a list of values. The key may be an unique number
(like in normal arrays) but also any string. The latter calculates a unique hash
value to access the associated value.

Lua comes with its own kind of associated array called table. Tables are the
main and only data structuring mechanism in Lua and a very powerful one. You
can use tables to build ordinary arrays (even with a counting from zero), stacks,
queues, function and symbol tables and more. Lua modules are organized by
tables. When we called the string.dump function for Lua it means call the
function with the index dump in the string module table.

181

KAPITEL 17. AN INTRODUCTION TO LUA

You will find more information about tables on page 189. Here we will concen-
trate on the basics and consider tables as a list of key/value pairs.

You can create a very simple table with:

1 days = { "Mon" , " Tue " , "Wed" , " Thu " , " F r i " , " Sat " , "Sun" }
2 for i =1 ,#days do
3 p r i n t (days [i])
4 end

Lua uses a normal numeric index counting from 1 when not specified otherwi-
se. The table index in the example above starts with 1. In line 2...4 we iterate
over all table items (the length operator # returns the number of items in the
table) and output the abbreviated week day names.

We can also change the indexing to start from zero by using the associate array
feature in Lua tables. Take a look:

1 days = {
2 [0] = "Mon" ,
3 [1] = " Tue " ,
4 [2] = "Wed" ,
5 [3] = " Thu " ,
6 [4] = " F r i " ,
7 [5] = " Sat " ,
8 [6] = "Sun"
9 }

10 for i =0 ,#days do
11 p r i n t (days [i])
12 end

Here we add an individual key for every week day. The keys are simply num-
bers starting with 0. The for loop in line 10 begins with 0 instead of 1, the
length operator # now returns 6 (the last key in the table).
Please note! If the table has no continuous index values, the result of the #
operator is different. We will discuss this special case on page 189.

Now back to our digital input state. We create a table and ’associate’ every
digital state 0 or 1 with the corresponding string ’OFF’ or ’ON’.

IOState = {
[0] = "OFF" ,
[1] = "ON"

}

Our GetDigitStateText function becomes:

1 function GetD ig i tS ta teTex t (s t a te)
2 local t b l = {
3 [0] = "OFF" ,
4 [1] = "ON"
5 }
6 return t b l [s t a t e]
7 end

If you pass an wrong state which doesn’t exist as a key in the table, for example
2, the function returns nil which is the Lua way to say ’this is an invalid value’.
The print function ignores a nil argument but the Lua interpreter will give you

182

17.1. GETTING STARTED

an error message as soon as you try to process a nil value like in a mathema-
tical function5:

p r i n t (n i l) −−> noth ing
p r i n t (math . s in (n i l)) −−> bad argument #1 to ’ s in ’

−−> (number expected , got n i l)

Returning a nil value when a string result is expected is not a good idea. In
most cases the result is processed by other functions or it is part of a string
operation. For example: The Lua interpreter stops the execution of the script in
the following line with an error attempt to concatenate a nil value because you
cannot add a nil value to a string.

p r i n t (" IO1 = " . . Ge tD ig i tS ta teTex t (2))

But you can easily intercept the returning of an invalid key (or index) in a table
because Lua handles a nil value also as logical false. See here:

1 function GetD ig i tS ta teTex t (s t a te)
2 local t b l = {
3 [0] = "OFF" ,
4 [1] = "ON"
5 }
6 return t b l [s t a t e] or " INVALID STATE"
7 end

We simply add a logical or condition in line 6. If the table item with the index/key
state is valid (exists and not nil), we return the indexed value otherwise we
return any fitting (maybe empty) string.

17.1.5 Reuse code with Lua modules
You can copy and paste individual functions wherever you need them. But it
makes more sense to group functions serving a similar goal in a module and
store them in an independent file.
A checksum module is a good example. The Lua interpreter used by the ana-
lyzer software comes with it’s own native checksum implementation and provi-
des you with the most used checksum algorithms. Nevertheless there may be
others you have written by yourself as like our example above.

To start a new Lua module file, click the ’New file’ icon in the editor toolbar or
press STRG + N .
The editor asks you what kind of new file you want to create. Choose Script
for ’Modules’ and replace the default file name with mychecksums.msbtml.
Click ’OK’ and the editor opens a new buffer with an already filled module code
framework.

Replace all occurrences of the default module placeholder name ModuleName
with MyChecksums. Add our checksum function from above but rename it to:
MyChecksums.Mod256Sum. Your module file now should look like:

1 loca l MyChecksums = { }
2
3 function MyChecksums .Mod256Sum(data)
4 local chksum = 0
5 for i =1 ,# data do

5Lua groups all mathematical functions in the math module.

183

KAPITEL 17. AN INTRODUCTION TO LUA

6 chksum = chksum + data : byte (i)
7 end
8 return chksum % 256
9 end

10
11 function MyChecksums . vers ion ()
12 return " 1 . 0 . 0 "
13 end
14
15 return MyChecksums

Lua handles modules via tables (another application for the mighty table con-
cept). In line 1 an empty table is created whereas the name is of no significant
importance. Afterwards we add our functions into the table. We do so by add
the leading table name to the function name separated with a dot. Lua uses the
function name as an index for the later access. In our example there are two
functions: Mod256Sum and Version.
Line 15 at least returns the table with all our functions.
Save the new created module, than switch to the SKETCH buffer again. Input:

1 checksums = requ i re "MyChecksums"
2 p r i n t (checksums .Mod256Sum(" He l lo wor ld "))

The Lua keyword require in line 1 loads our module file and assigns it to the
given variable, here checksums.
checksums is indeed a table as you can see with:

p r i n t (type (checksums)) −−> tab le

(The Lua type function returns the type of its only argument as a string.)

You can add further checksum functions to your checksum module file. Just
remember to add the module name (in our example MyChecksums with a dot
to the function name. The module name followed by the dot makes the function
part of the internal module table where each function name is a table entry.

1 function MODULENAME.FUNCTIONNAME (. . .)
2 −− f u n c t i o n code . . .
3 end

Functions without the leading module name behave like local variables. They
are only accessible from within the module file but not from the outside. You will
find more information about Modules on page 201.

Test limitations

The editor built-in Lua interpreter cannot execute Lua modules which
depend on a special view environment like the ProtocolView box module
or others!

17.2 The Lua language
Each programing language comes with its own ingredients like operators, key-
words, functions and last but not least some rules how you put this things to-
gether. This is called the programing language syntax. The language syntax
declares, how a program has to been written correctly.

184

17.2. THE LUA LANGUAGE

In this chapter we will give you a short overview about the Lua language, the
supported operators, keywords and some helpful additional modules (libraries)
we have integrated in the embedded Lua by default.

17.2.1 Lua is case-sensitive
First of all: Lua is a case sensitive language. while is a reserved word (a so
called keyword), but WHILE or While are two other identifiers denote a variable
or function. Because this is the common use in the most modern languages it
shouldn’t bewilder you much.

17.2.2 Whitespaces and line ends
Lua ignores any whitespaces (like the space or tab characters) if they aren’t
part of a string constant (see 17.2.4.6). It also doesn’t worry about the inden-
tion like Python, therefore you can format your code for your own purpose (or
just make it more readable).
Lua doesn’t use any special line end and line breaks play no rule in the Lua
syntax. The Lua intepreter detects the end of a statement automatically there-
fore a line can contain more than one statement and a statement can also be
split into several lines.
If you write several statements in one line, you can use the semicolon as a
separator.

1 x = 1 y = 2 −−> not very readable but ok
2 x = 1; y = 2 −−> b e t t e r
3 z = x
4 +
5 Y −−> z = 3

17.2.3 Comments
A comment in Lua starts anywhere with a double hyphen -- and runs until
the end of the line. It’s also helpful if you want to exclude some lines from
execution.
More than this. Lua provides also a block comment which starts with --[[
and runs until the corresponding --]]. It makes it very easy to comment or
uncomment several lines as we will show in the following:

1 x = 1
2 −− [[
3 x = 10
4 −−]]
5 p r i n t (x) −−> 1

To uncomment the block, just add a single hyphen to the beginning comment.
The starting and closing comment identifiers are now just like other commented
lines and the statement between them will be executed as normal.

1 x = 1
2 −−− [[
3 x = 10
4 −−]]
5 p r i n t (x) −−> 10

185

KAPITEL 17. AN INTRODUCTION TO LUA

17.2.4 Types and values
Lua is a dynamically typed language. You don’t have to specify the type of a
value, because each value carries its own type. Lua supports eight basic types
but we contemplate only the following ones:

number

boolean

string

nil

table

function

It is common use to define most of the types also as a ’constant’ value. A
constant is a ’hard coded’ value in your program which isn’t a result of any
computing. Constants are numbers like 100, 2.5, 5.2E-03 (integer and floating
point numbers, whereat Lua doesn’t distinguish between them), strings like
"Hello world" and the boolean values false and true.

17.2.4.1 Numbers
Lua simplifies the usage of different numbers like integer, single float, double
float by using only one kind of type for each numbers. Numbers in Lua are in-
ternally always handled as double precision floating point numbers and were
converted automatically when necessary.
At least this was true before Lua introduces the bitwise operators which de-
manded a second number representation, namely integer number types.
However, this is a special case and you will mostly not effected by it. The rare
situations when you have to pay attention are discussed in section 17.2.4.2.
At the moment we consider numbers as floating point types exclusively.

1 p r i n t (1) −−> 1
2 p r i n t (−12) −−> −12
3 p r i n t (100000000000) −−> 100000000000

Notice that the numbers are never rounded into integers to. Hence:
1 p r i n t (10 / 3) −−> 3.3333333333333

If you need only the integer part of a number, you can use the math.modf
function. This function returns both, the integral and fractional part of a given
floating number.
p r i n t (math . modf (10 / 3)) −−> 3 0.33333333333333

You can use the function to build your own floating to integer conversion:
function i n t e g e r (number)

i n t , dec = math . modf (number)
return i n t

end
p r i n t (i n t e g e r (10 / 3)) −−> 3

As said before: Lua automatically makes a type conversion if needed. In the
code snippets above mostly from a floating point (double) representation to a
string. But it works in both directions. For example:

186

17.2. THE LUA LANGUAGE

s = "1 .25 "
p r i n t (2.0 * s + 2.5) −−> 5.0

Here the string "1.25" is first converted into a floating point number, multiplied
with 2.0 and added to 2.5 before the result (still a floating point number) is
converted back to a string by the print function.

17.2.4.2 Integer versus floating point
We mentioned it before: Since bitwise operations don’t make sense with floa-
ting point numbers, Lua tries to convert - if necessary - all number operands
to integer values when they are part of a bitwise operation. The result of any
bitwise operation is also an integer value. This is easy to understand. And to
handle integer operations more convenient Lua 5.3 introduced an own integer
type as a second number representation. But with the price of some little pitfalls
where the automatic conversion doesn’t work any longer.
Here are some examples you may consider when your Lua code doesn’t work
anymore after updating the analyzer program:
−− Lua 5.2 using the b i t 32 l i b r a r y
p r i n t (b i t . r s h i f t (1 .5 , 1)) −−> 1
−− Lua 5.3 w i th i n t e g r a t e d b i t w i s e opera tors
p r i n t (1.5 >> 1) −−> er ro r , number has no i n t e g e r rep resen ta t i on
−− Lua 5.2
p r i n t (s t r i n g . format ("%d \ n " , 10 / 3)) −−> 3
p r i n t (s t r i n g . format ("%04x " , 1 .25)) −−> 0001
−− Lua 5.3
p r i n t (s t r i n g . format ("%d \ n " , 10 / 3)) −−> bad argument #2 to ’ format

’ (number has no i n t e g e r rep resen ta t i on)
p r i n t (s t r i n g . format ("%04x " , 1.25)) −−> bad argument #2 to ’ format ’

(number has no i n t e g e r rep resen ta t i on)

Every time you experience such a case it would be nice to query the num-
ber type of a variable or operation result. Luckily Lua have two. The first one
(type() returns the common type, i.e. a string, function, table, number.
x = "1 .25 "
p r i n t (type (x)) −−> s t r i n g
p r i n t (type (x + 1.0)) −−> number
p r i n t (type (type)) −−> f u n c t i o n

But here we are more interested in the number type itself. Is a number of type
integer or floating point. The Lua solution is the math.type() function.
p r i n t (math . type (1.25)) −−> f l o a t
p r i n t (math . type (1)) −−> i n t e g e r

Please note that math.type() returns nil if its parameter is of no number
type!
p r i n t (math . type (" 1 . 2 ")) −−> n i l

But what can you do if you need an explicit type conversion? For instance if
you must make sure, that the result of a calculation or operation definitely is an
integer like in the string.format(...) example line above.
At this point you need to know that Lua makes an automatic floating point to
integer conversion as long as the floating point exists only of an integer part.
Numbers like 1.0 or 2E03.
p r i n t (s t r i n g . format ("%04X" , 1.0)) −−> 0001
p r i n t (s t r i n g . format ("%04X" , 1E02)) −−> 0064

187

KAPITEL 17. AN INTRODUCTION TO LUA

But:

x = 1E−02
p r i n t (s t r i n g . format ("%04X" , x)) −−> bad argument #2 to ’ format ’ (

number has no i n t e g e r rep resen ta t i on)

You may already suspect it. The solution is simply to get rid of the decimal
places. You can do this either with the math.floor() function or even easier
with the Lua floor division operator //.

x = 100.5
p r i n t (s t r i n g . format ("%04X" , x / / 1)) −−> 100

17.2.4.3 Hexadecimal constants
Despite the fact, that Lua compute exclusively with floating points you someti-
mes want to use other number bases like hex.

1 p r i n t (0x1234) −−> 4660

Lua allows to input hexadecimal values with a leading 0x.

17.2.4.4 Floating point constants
Lua can understand also exponent types for expressing numbers. Therefore
you can write numeric constants with an optional decimal part and an optional
decimal exponent like:

1 p r i n t (−0.05) −−> −0.05
2 p r i n t (10E−2) −−> 0.1
3 p r i n t (1.25E+6) −−> 1250000

17.2.4.5 Booleans
A boolean data type according to the classical logical state and is either true
or false. If a boolean value isn’t true, it has to be false and reversely. Boolean
values are used to represent the result of logical or conditional operations.

1 p r i n t (2 > 1) −−> t rue
2 x = 2 < 4
3 p r i n t (x) −−> f a l s e

17.2.4.6 Strings
Strings in Lua has the common meaning, a sequence of characters. But Lua
is, in opposition to other languages, eight-bit clean which has the great advan-
tage: Strings can contain characters with any numeric code, also a null byte (in
C the string terminator). With other words: You can store any binary data in a
string without an exception.
Strings can be defined using single quotes, double quotes, or double square
brackets.

1 p r i n t (" I t ’ s your code ") −−> I t ’ s your code
2 p r i n t (’He says : " Hi " ’) −−> He says : " Hi "
3 p r i n t ([[He l lo \ nWorld]]) −−> Hel lo \ nWorld

Why so different ways to specify a string? It allows you to enclose one type of
quotes in the other. And: Double brackets have a few other properties like to
suppress escape sequences as seen above.

188

17.2. THE LUA LANGUAGE

17.2.4.7 Escape sequences in strings
Lua strings can contain the following escape sequences:

Escape sequence Description
\a bell
\b backspace
\f formfeed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\" double quote
\’ single quote
\ddd character with its numeric value ddd

The following examples show their use:
1 p r i n t (’ I t \ ’ s your code ’) −−> I t ’ s your code
2 p r i n t ("He says : \ " Hi \ " ") −−> He says : " Hi "
3 p r i n t (" Tab1 \ tTab2 ") −−> Tab1 Tab2
4 p r i n t ("Two backslashes \ \ \ \ ") −−> Two backslashes \ \
5 p r i n t (" He l lo \ nworld ") −−> Hel lo
6 world
7 p r i n t (" He l lo wor ld \033") −−> Hel lo wor ld !

You can also specify each character in a string by its numeric decimal value
through the escape sequence \ddd as mentioned above. For instance the bi-
nary sequence of the bytes 0...3 comes as: "\000\001\002\003".

17.2.4.8 nil
nil is a special type and indicates a non-value. Each variable has a nil value
before its first assignment by default.

1 p r i n t (x) −−> n i l

More than: Lua uses nil to specify the absence of a useful value (it doesn’t
exist anymore). By setting a variable to nil you can delete a variable.

17.2.5 Tables
One of Lua’s mightiest built-in datatypes is an associate array, which defines
one-to-one relationships between keys and values. Key and values can be of
each type. And more than this: Because functions are also just some kind of
value, you are able to realize some object orientated behaviour with tables too,
but this go beyond the scope of this chapter.

Tables has no fixed size and grow up as necessary. If you havn’t use of a table
anymore, you can throw it away with assigning nil to it.
Ok, that’s enough for the first. Let’s go on with a few examples to bring more
light in this matter. At first we will create a simple list containing three fruits as
strings:

189

KAPITEL 17. AN INTRODUCTION TO LUA

1 f r u i t s = { " apple " , " banana " , " orange " }
2 p r i n t (f r u i t s [2]) −−> banana

This statement in line 1 will initialize the first entry fruits[1] in the table with
"apple", the second fruits[2] with "banana" and the third with "orange".

Please note again!
We mentioned before that Lua indexes always start with 1 and not with 0 (like
in C/C++ and other languages). The table here behaves like a simple list. You
can append a new element to the fruits with:

f r u i t s [# t +1] = " pear "

The expression above uses Lua’s internal length operator # (see page 197) to
get the next free table entry.
As an alternative you can use the table.insert(table,value) function.

1 t = { 1 , 2 , 3 , 4 , 5 }
2 tab le . i n s e r t (t , 6) −−> 1 , 2 , 3 , 4 , 5 , 6
3 p r i n t (" Count : " , # t) −−> Count : 6

If you like to insert a new item somewhere in between the list without having
to shuffle the other elements around you can use the same function with an
additional position parameter table.insert(table,position,value).

1 t = { 1 , 2 , 3 , 4 , 5 }
2 tab le . i n s e r t (t , 4 , 44) −−> 1 , 2 , 3 , 44 , 4 , 5
3 p r i n t (" Count : " , # t) −−> Count : 6

To remove an element from the table (or list) use the call:
table.remove(table,position).

1 t = { 1 , 2 , 3 , 4 , 5 }
2 tab le . remove (t , 4) −−> 1 , 2 , 3 , 5
3 p r i n t (" Count : " , # t) −−> Count : 4

You can always replace one element with another one just simply by overwri-
ting it. Each element in the list is accessable with the index operator []. To
rewrite the second element with 200 t[2]=200 will do the job. You can also
query the value at a given position conversely with: v=t[2]. If there doesn’t
exist a value at the index position, a nil will return. On the other hand: If you try
to overwrite a value at an invalid position it will append to the list.

In the examples above the keys of the associated array are set by default (as
numeric) and only the values are given. We call such tables as numeric arrays
or tables. But you can choose any desired index or key value too. Imagine a
data type representing a point:

1 po in t = { x = 5 , y = 10 }
2 p r i n t (po i n t . x , po i n t . y) −−> 5 10

A table storing data with a key/value relationship is sometimes called a dictio-
nary.

17.2.5.1 Discontinuous tables with holes
Consider the following example:

190

17.2. THE LUA LANGUAGE

1 errorCodes = {
2 [1] = " General e r r o r " ,
3 [2] = " I n v a l i d command" ,
4 [3] = " I n v a l i d function " ,
5 [7] = "Wrong checksum " ,
6 [11] = " Timeout "
7 }
8 p r i n t (#errorCodes) −−> 3 ! ! !

What’s that? Lua initialize every not used index in a table with nil. When the
table or array has nil elements (or gaps), the length operator treats the first
occurring nil value as the end of the table. In our example the index 4 is nil just
like the following table entries with index 5...10. So # stops at index 4.

A similar situation appears when the table is used as a dictionary, containing
strings as keys for the key/value pairs. For instance:

1 t r a n s l a t i o n s = {
2 [" apple "] = " Apfe l " ,
3 [" banana "] = " Banane " ,
4 [" orange "] = " Orange " ,
5 [" pear "] = " Bi rne "
6 }
7 p r i n t (# t r a n s l a t i o n s) −−> 0 ! ! !

Lua calculates a special hash number for every key which then is used as a
table index where to store the value6. A perfect hash algorithm creates one un-
ique number for every possible key (string). The hash number can be any value
in the range of possible keys. In our example none of the hash numbers is 1.
The very first table entry therefore is nil and the length operator already stops
on the first index giving us 0.
If you really need the number of items in a not continuous table you cannot use
the # operator but have to iterate over all entries. We will discuss this in the
next section. For now remember:

Use the # operator on tables with care

The # operator only works on continuous one-dimensional arrays (ta-
bles without a key). Avoid using the length operator on arrays that may
contain holes!

Luckily this is not a great disadvantage because you rarely need the number
of entries in a not continuous table. You rather access the values by their keys.
The size of the table also doesn’t matter because Lua takes care about it.

17.2.5.2 Iterate through tables
You can iterate over a numeric (one-dimensional and continuous) array or table
as we did before when iterate over a string.

1 f r u i t s = { " apple " , " banana " , " orange " , " pear " }
2 for i =1 ,# f r u i t s do
3 p r i n t (f r u i t s [i]) −−> apple banana orange pear
4 end

6This is a simplification, but the principle is the same!

191

KAPITEL 17. AN INTRODUCTION TO LUA

This also works when you are using an index starting with 0. And even if you
add table entries in an unsorted order.

1 f r u i t s = {
2 [1] = " banana " ,
3 [2] = " orange " ,
4 [3] = " pear " ,
5 [0] = " apple " ,
6 }
7 for i =0 ,# f r u i t s do
8 p r i n t (f r u i t s [i]) −−> apple banana orange pear
9 end

It is only important, that the index numbers are continuous and without holes.
The following example does not work:

1 f r u i t s = {
2 [2] = " apple " ,
3 [3] = " banana " ,
4 [4] = " orange " ,
5 [5] = " pear " ,
6 }
7 for i =0 ,# f r u i t s do
8 p r i n t (f r u i t s [i]) −−> !
9 end

The first index in an one-dimension (numeric) table is 1 by default unless you
start with 0 as shown above. Here we start with index 2 which left the first table
entry (index 1) as nil and the length operator stops already here.

Lua provides you with two iterators ipairs and pairs. Both are called with a
table as argument and return a key/value pair (thus the name).
ipairs is mostly used for numeric tables and returns index/value pairs. It
stops on the first nil or non numeric key. You can rewrite our first example
with ipairs as:

1 f r u i t s = { " apple " , " banana " , " orange " , " pear " }
2 for i , v in i p a i r s (f r u i t s) do
3 p r i n t (i , v)
4 end

Line 2 calls the iterator and stores the results in the variables i (key or index)
and v (value). The iterator stops automatically at the the first nil entry or table
end. Line 3 outputs the pair as:

1 apple
2 banana
3 orange
4 pear

More interesting is the second iterator pairs. It is specially used for associative
tables and therefore particular suitable for tables with holes. But it also works
for numeric tables. See again:

1 f r u i t s = {
2 [2] = " apple " ,
3 [3] = " banana " ,
4 [4] = " orange " ,
5 [5] = " pear " ,
6 }
7 for i , v = pa i r s (f r u i t s) do

192

17.2. THE LUA LANGUAGE

8 p r i n t (i , v)
9 end

The result is:

3 banana
2 apple
4 orange
5 pear

You may notice that the output is in an unsorted order. Even it the keys look like
a sorted sequence from 2...5 they are internally used as input for the hash num-
ber algorithm. And since the resulting hash value is different from the original
key, so is the order of the table entries.

17.2.5.3 Sorting tables
Associated arrays in Lua cannot sorted by the keys as explained before. But
you can create an additional numeric table to store and order the keys and use
this one to iterate over the table you want to sort.

1 f r u i t s = {
2 [2] = " apple " ,
3 [3] = " banana " ,
4 [4] = " orange " ,
5 [5] = " pear " ,
6 }
7 a = { }
8 for i , v in pa i r s (f r u i t s) do a [# a+1] = i end
9 tab le . s o r t (a)

10 for i , v in i p a i r s (a) do p r i n t (i , f r u i t s [v]) end

Now the result becomes:

2 apple
3 banana
4 orange
5 pear

Explanation: Line 7 creates a new table which we use to store the indexes
(keys) of our fruits table.
In line 8 we iterate over the fruits and add every index (key) at the end of
the table a. Table a becomes {3,2,4,5} (see output before).
Table a is a numeric table7.! So we can sort it with the Lua table.sort func-
tion in line 9. The table a content is now {2,3,4,5}.
In line 10 at least we iterate over this table using every item as index for our
original fruits.

We can even put this code in our own iterator and use it instead of the stan-
dard pairs() and ipairs(). The iterator function must only return a new
key/value pair every time it is called.

1 function sor tedPa i rs (t)
2 local a = { }
3 for i in pa i r s (t) do a [# a + 1] = i end
4 tab le . s o r t (a)

7Strictly speaking: Numeric tables in Lua don’t have a key, they consists only of a continuous
sequence of values forming a one-dimensional array.

193

KAPITEL 17. AN INTRODUCTION TO LUA

5 local i = 0
6 return function ()
7 i = i + 1
8 return a [i] , t [a [i]]
9 end

10 end
11
12 for i , v in sor tedPa i rs (f r u i t s) do
13 p r i n t (i , v)
14 end

The crucial part in the code above between line 5...9.
sortedPair does not return a key/value pair itself. Rather it delegates this to
an anonymous function8 in line 6 which returns the pair.

Such kind of function like sortedPair is also called a factory function.
When we call sortedPair in the for loop in line 12, the function sorts the
indexes of the passed table and stores the result internally in a new table a. It
also initiates an index counter i = 0 which is also kept in memory (but never-
theless not accessible from outside because it is local). Then it returns the
actual iterating function which accesses the sorted indexes in line 6.
In other words: It creates a new sorting iterator function and initializes all the
necessary stuff therefore the name factory function.

In the for loop every call of sortedPair calls the anonymous function in fact.
And only the first call initiates all the internal variables (line 2...5).

17.2.6 Identifiers
In computer languages identifiers are names referencing some kind of variable
or a function. Some identifiers are reserved by the language itself as so called
keywords. (We already know the boolean keywords true and false). Others are
built in functions like print.
Names (or identifier) in Lua can be any string of letters, digits and underscores,
not beginning with a digit9. Valid names are:

x y ABC t1 _nm
aVeryLongVariableName the_last_result

Invalid names throw an error
1 p r i n t (2n) −−> malformed number near ’2a ’

17.2.7 Keywords
The following keywords are reserved and cannot be used as names:

end false for function if
in local nil not or
repeat return then true until while

Please remember: Because Lua is case-sensitiv, and is a keyword, whereas
And and AND are just two other and different identifiers!

8An anonymous function is a function without a name.
9Because the analyzer software and Lua itself too reserves the starting _ for some language

supplements we recommend to start a variable name without an underscore.

194

17.2. THE LUA LANGUAGE

17.2.8 Variables
Variables are like a named box that can store any kind of value. In Lua variables
can cover a single number as also a million characters or a container of key-
value pairs. The name of the variable has to be a valid identifier (see above).
You don’t have to declare a variable before the first use. As soon as the Lua
interpreter finds a new variable it will create it automatically.

17.2.8.1 Assignment
Note! Before the first assignment to a variable, its value is nil. Assignment is
the general procedure to set or change the value of a variable (or a table field).

1 i f x == n i l then
2 x = 1
3 end
4 p r i n t (x) −−> 1

As mentioned before: Lua is a dynamically typed language. You don’t have to
define the type of a variable because each value carries its own type.
And: The type of a variable is an object of change. Every time you assign a
new kind of value to a variable it change its type again.

1 x = 1
2 x = " He l lo World "
3 p r i n t (x) −−> Hel lo World

Lua also supports multiple assignment which means: A count of values is assi-
gned to a count of variables in one step. We will discuss this very nice feature
in a later section in the context of functions with multiple results. For the cu-
rious reader here a litte code example exchanging the values of two variables
without any additional temporary variable:

1 x = 5
2 y = 10
3 x , y = y , x
4 p r i n t (x , y) −−> 10 5

17.2.8.2 Global and local variables
There are three kinds of variables in Lua: Global variables, local variables and
table fields (we discuss tables later).
By default each variable is a global one which means: It is accessable during
the complete runtime. Global values resides in a ’global’ space (in detail in a
global table).
Beside this local variables is only valid in the context or block where they are
declared.

1 y = 10
2 i f x == n i l then
3 local y = 5
4 x = 1
5 end
6 p r i n t (x , y) −−> 1 10

It’s a common strategy to use local variables wherever you don’t like to access
a global one. For instance if you need some variables only in a function, declare
them as local.

195

KAPITEL 17. AN INTRODUCTION TO LUA

17.2.9 Operators
Operators are symbols, which activate calculation, when using them in com-
bination with variables, values or results from expressions. Lua supports arith-
metic, bitwise, conditional and logical operators. In addition a very helpful string
concatenation operator.

17.2.9.1 Arithmetic operators
Lua supports the usual arithmetic operators: the binary + (addition), - (subtrac-
tion), * (multiplication), / (division), % (modulo), ^ (exponentiation) and unary -
(negation).

+ - * / % ^ //

The last one // is a special divisor operator and returns a rounded quotient
(towards minus infinity, which is the same as the floor of the division of its ope-
rands). Please note: In Lua Numbers are always represented as real (double-
precision floating-point) numbers.

17.2.10 Bitwise operators
The Lua interpreter embedded in the analyzer program provides the following
bitwise operators:

& bitwise AND
| bitwise OR
∼ bitwise exclusive OR
>> right shift
<< left shift
∼ unary bitwise NOT

Please not: All bitwise operands convert it operands to integers and the result
of the bitwise operation is also always an integer.

17.2.10.1 Conditional operators
Conditional operators always result in true or false. Lua provides the following
conditional (or relational) operators:

< > <= >= == ~=

The == operator tests for equality, the operator ∼= is the opposite of equality.
You can apply all operators to any two values, numbers and strings (all conditi-
on operators also dealing with strings). If the both values have different types,
Lua handles them as not equal.
Please note: The value 0 isn’t a false test condition as you may suspect from
other languages.

1 p r i n t (" abc " < " def ") −−> t rue
2 p r i n t (0 or true) −−> 0
3 p r i n t (fa lse or true) −−> t rue

196

17.2. THE LUA LANGUAGE

17.2.10.2 Logical operators
Lua provides logical operators for use in statements. They are: and, or and
not. The logical operators behave in a common way. They always evaluate to
either true or false. In a special case the value nil will be considered as false.
and and or use a short-cut evaluation, means: They evaluate their second
operand only when necessary. For instance:

1 p r i n t (4 and 5) −−> 5
2 p r i n t (4 or 5) −−> 4 (shor t−cut eva lua t i on)
3 p r i n t (fa lse and true) −−> f a l s e (shor t−cut eva lua t i on)
4 p r i n t (a and 1) −−> n i l , because a wasn ’ t s p e c i f i e d
5 p r i n t (not fa lse) −−> t rue

17.2.10.3 String concatenation operator
The two dots .. denote the concatenation operator in Lua. The operator takes
two strings (numbers will convert by Lua in strings) and combines them in one.
Please note! If the first operand is a number you have to insert a space between
the number and the .. operator. Otherwise Lua missinterprets the first dot as
a decimal point and throws an error. Hence:

1 p r i n t (" He l lo " . . " World ") −−> Hel lo World
2 p r i n t ("100 " . . " sec ") −−> 100sec

The concatenation operator always creates a new string and leaves the ope-
rands behind without modifications.

17.2.10.4 The length operator
The length operator is denoted by #. The length operator returns the count of
bytes in a string or the items in a table if the table doesn’t have any gaps.

1 p r i n t (#" He l lo World ") −−> 11

17.2.10.5 Precedence
The following is a list of all Lua operators and their order of predence. The
operators are listed from lowest to highest priority:

or
and
< > <= >= ~= ==
|
~
&
<< >>
..
+ -

* / // %
unary operators (not # - ~)
^

If in doubt, use explicit parentheses. It makes your code more readable and
prevents you from an any additional look in this manual.

197

KAPITEL 17. AN INTRODUCTION TO LUA

17.2.11 Control structures
Control structures tell the program which way to proceed in the code (or script).
They are integrated part of each language and something like the traffic police
in Lua scripts.
Lua provides the following set of control structures, the if for conditional execu-
tions, for, repeat and while for iteration. All of them, except repeat, needs the
explicit end terminator. repeat has to be closed with until.

17.2.11.1 if then else
The if statement tests a condition and executes depending to its result the then
section or the else section. The later one is optional.

1 i f x < 0 then
2 x = 0
3 else
4 x = math . s q r t (x)
5 end

You can put small condition tests in a single line like:

1 function max(a , b)
2 i f a > b then return a else return b end
3 end

Lua doesn’t have any switch statement. Therefore the following if, elseif chains
are common.

1 i f a >= 100 then
2 exp = 2
3 e l s e i f a >= 10 then
4 exp = 1
5 else
6 exp = 0
7 end

17.2.11.2 while
The while statement executes a block as soon as the while condition is true.
As usual the condition is tested first. The block will never execute if the first test
results in false.

1 loca l x = 0
2 while x < 10 do
3 x = x + 1
4 end

17.2.11.3 repeat
On the contrary the repeat statement repeats its body until the condition is
true. Because the test is done after the block, the block is always executed at
least once. Please note the different terminator until.

1 loca l x = 0
2 do
3 x = x + 1
4 u n t i l x < 10

198

17.2. THE LUA LANGUAGE

17.2.11.4 Numeric for
Lua provides two for statements but we confine ourself to describe only the first
and more comprehensible numeric for. The numeric for has a variable with a
starting assignment, an end value and an optional step value. The latter one is
1 by default.

1 for var=from , to , step do
2 −−> do something
3 end

For instance a

1 loca l m = 0
2 for n=0 , 9 , 0.1 do
3 m = m + 1
4 end
5 p r i n t (m) −−> 5.5

17.2.11.5 break
A break cancels a for, repeat or while loop and continues with the instructions
after the loop block.

1 loca l m = 0
2 for n=0 , 9 , 0.1 do
3 m = m + 1
4 i f m == 2.5 then
5 break
6 end
7 end
8 p r i n t (m) −−> 2.5

17.2.12 Functions
Every computer language has functions, even the simple ones. Lua is no ex-
ception. A function can perform a specific task and/or compute and return va-
lues. If you notice the plural values you are right - Lua functions are able to
return multiple results.
In both cases you have to give the function a list of arguments enclosed in par-
entheses. If the function doesn’t need any argument, you still give it a empty
list specified by ().

17.2.12.1 Function call
Simply said a function is called just by its name and an optional count of argu-
ments as a list. You can invoke a function with more than the specified argu-
ments whereas only the first are handled but if you try to call a function with
fewer parameters you get an error.
You learned about some already defined functions like the print(...) or the
math.sqrt(x). Most of this functions are part of some module, others are
defined by the analyzer.

17.2.12.2 Function definition
Function are conventionally defined with the keyword function.

1 function fnc (arg1 , arg2 , . . .)
2 −−> the f u n c t i o n body
3 end

199

KAPITEL 17. AN INTRODUCTION TO LUA

For example a maximum function returning the greater value of two given num-
bers is defined as:

1 function max(n1 , n2)
2 i f n1 > n2 then return n1 else return n2 end
3 end

Function doesn’t have to return a value. In this case you can just omit the re-
turn statement or leave the return without any following value(s).
As mentioned above, a function in Lua can also return multiple results. This is a
big advantage, because you don’t have to collect the results in some container
and don’t run the risk of side effects by set up a global (outstanding) variable.
Several predefined functions in Lua return multiple values like the math.modf(x)
(one result is the integral part of x and the other one the fractional part of x).
For instance:

1 p r i n t (math . modf (5.125)) −−> 5 0.125

The definition of a function with multiple results is as easy as of each other
function. An example shows the differences. Imagine some function to con-
vert coordinates of a plane polar system (radius and angle) into the cartesian
system (x and y).

1 function po la r2ca r tes ian (radius , angle)
2 x = rad ius * math . s in (math . rad (ph i))
3 y = rad ius * math . cos (math . rad (ph i))
4 return x , y
5 end

Instead of build some container for both results we just return them as a multiple
result.

17.2.12.3 Recursive function calls
In the following we will write a function to call the faculty of a given number (the
mathematical equivalent to n!).

1 function f a c u l t y (n)
2 i f n == 0 then
3 return 1
4 else
5 return n * f a c u l t y (n − 1)
6 end
7 end
8
9 p r i n t (f a c u l t y (5)) −−> 120

Recursive functions often provide elegant and small solutions. But they have
a price. Considering the code above. You see that the recursion depth grows
with each increasing number. For a programming language this means: Every
time a new function is called without leaving the calling scope the usage of
stack memory10 rises until no further stack memory is left. Then the program
crashes!
You can limit the maximum number of recursions. In our example just by limit
the passed parameter n. But this requires a disciplined approach by the pro-
grammers - and sometimes they simply forget.
Luckily the analyzers Lua implements a built-in guard. Change the call to:

10The stack is part of the normal memory but reserved for functions to store their local variables.

200

17.2. THE LUA LANGUAGE

p r i n t (f a c u l t y (30)) −−> [s t r i n g " − − [[. . . "] : 1 1 : s tack over f low

The analyzer software limits the recursion depth to specific number which we
experienced as a good compromise between memory consumption and pro-
cessor usage.
This is especially important if you write some protocol template code which is
executed in real-time!

We can write the most recursive functions also in a non-recursive way. In our
example an alternative faculty function looks like:

1 function f acu l t y_non_recu rs i ve (n)
2 local sum = 1
3 i f n <= 1 then
4 return 1
5 else
6 for i =2 ,n do
7 sum = sum * i
8 end
9 end

10 return sum
11 end
12
13 p r i n t (facu l t y_non_recu rs i ve (100)) −−> 9,3326215443944e+157

This one consumes only processor power. The stack usage is very small, the
local variables sum and iteration counter i.

17.2.13 Modules
A module is a package of functions for a special purpose. You already know the
modules string, math and table. There are also modules belonging to the
analyzer software which are not part of the standard Lua language. We explain
these separately in chapter 18.
And: Don’t forget your own modules written in Lua itself like our checksum
example before.
From the Lua point of view each module is a table which contains functions
(functions are a special kind of value as we mentioned before), global module
values, module constants etc. Therefore each module function is called like a
table element with the prefixed table (module) name and a dot.
How you can extend the Lua language with your own modules was part of
the Lua introduction before (see section 183). Here we focus on the standard
modules coming with Lua 5.3.

17.2.13.1 Standard modules
The following standard modules are supported by Lua in the analyzer environ-
ment. They are working within all Views if not stated otherwise.

Module Description
coroutine Coroutines provide an independent thread of execution in a

kind of cooperative multitasking. They are part of the basic
Lua but we recommend not to use it unless you know what
you are doing.

math The mathematical library. It provides access to the mathe-
matical functions defined by the C standard.

201

KAPITEL 17. AN INTRODUCTION TO LUA

os Partly supported! Gives access to some OS specific func-
tions like date, time and locale settings. Other functions
for executing programs, read environment variables or mo-
de/rename files which are part of the standard Lua os library
are excluded!

string The string library provides a lot of generic function for string
manipulations, searching and extracting substrings and pat-
tern matching with regular expressions.

table The table library contains special functions for array or list
tables (with a numeric indexing).

Lua modules NOT supported in the analyzer Lua implementation are:

debug (replaced by own debug module)
io

Provided functions in the partly supported os module are:

os.clock
os.date
os.difftime,
os.setlocale
os.time

You will find a short (but very good) reference paper about Lua and its suppor-
ted modules as one PDF file at: http://lua-users.org/wiki/LuaShortReference
The paper is also contributed by the analyser software. Take a look in the doc
directory of your installation folder.

17.3 Lua restrictions
To avoid a slow down of the analyzer software by busy or overloaded compu-
ting scripts, for instance a long running or endless loop, the internal Lua VM
(virtual machine) doesn’t allow to outran a specified quantum of operations.
In this case, the VM aborts the execution of the script and throws out an infor-
mational message.
Just try the following in the Editor SKETCH buffer:

1 loca l x = 0
2 while true do
3 x = x + 1
4 end

--> [string "local x = 0..."]:-1: overrun of allowed executions

You can adapt the allowed executions in a specific range (which we experi-
enced as a good compromise between CPU lasting execution and maximum
blocking time of the interpreter) with the config module. It is described in
detail in section 18.2.6.

202

http://lua-users.org/wiki/LuaShortReference

17.4. LUA REFERENCES

17.4 Lua References
This chapter can’t replace any good introduction to Lua. It only covers the ne-
cessary information you need to undertake the first steps with Lua in the Serial
Analyzer software. It also gives you a small outlook of all the language features
Lua comes with.
Lua is free available and well documented. You will find a lot or sources, ex-
amples and documentations in the world wide web. A good (if not to say the
best one) is the Lua website at:

http://www.lua.org

You will find a very good tutorial too at:

http://lua-users.org/wiki/TutorialDirectory

A direct link to the original Lua manual for 5.3 as used in the analyser software
is here:

http://www.lua.org/manual/5.3/

203

http://www.lua.org
http://lua-users.org/wiki/TutorialDirectory
http://www.lua.org/manual/5.3/

KAPITEL 17. AN INTRODUCTION TO LUA

204

18
Lua analyzer extensions

The Serial Analyzer software offers some additional modules and
data structures to link the capabilities of the analyzer with the
Lua language. Some of them are fitted as best to the according
view. Others can be used in all Views without limitations.

18.1 Modules overview
The table below lists all provided modules, the View availability and a short des-
cription in an alphabetical order. The modules are explained in detail afterwards
with example code either for a given View or in a more general usage.
Modules exclusively usable in certain Views like the ProtocolView or DataView
are described in detail in the according View chapter. They are only listed here
for completeness.

Obsolete modules
bit32 and b(un)pack

Name Usage Description
base16 Common Encoding and decoding functions for ba-

se16 sequences as used in Modbus ASCII
transmissions

bit32 OBSOLETE! This library provided bitwise operations for
32 bit values but with the new bitwise opera-
tors in Lua you don’t need it anymore! The
module will be removed in one of the next
versions. See 18.2.2 for the details.

box ProtocolView Only ProtocolView! The box module is re-
sponsible to display the data of each tele-
gram in the ProtocolView.

bpack OBSOLETE! This function was replaced by the now nati-
ve Lua string.pack function. See 18.2.3
for the details.

bunpack OBSOLETE! This function too was replaced by the now
native Lua string.unpack function. See
18.2.3 for the details.

checksum Common Contains checksum algorithms for Modbus
RTU (CRC16), Modbus ASCII (LRC), BAC-
Net (CRC8 and CRC16), DNP3 and CRC16
CCITT (Kermit) and more.

205

KAPITEL 18. LUA ANALYZER EXTENSIONS

config Common The config module is intended to adjust so-
me internal Lua interpreter settings. Repla-
ces the former cfg Module.

data DataView Only DataView! Provides random access to
all recorded data bytes in the DataView and
highlighting of single bytes relative to the
cursor position.

debug DataView,
ProtocolView

Let you output any text or variable for debug
purpose. The provided functions are the sa-
me for both views but the context may differ,
so they are described in the DataView re-
spectively ProtocolView chapter.

record Common Provides information about the current or
loaded record. For example the record start
time, the bus wiring, the signal names and
the analyzer type of the record.

string.dump Common Extents the original Lua string module with a
hex/dec dump functionality like the telegram
relating dump function.

telegrams ProtocolView Only ProtocolView! The telegrams module
gives you access to all recorded telegrams
in the ProtocolView up to the present time.

transmission Common Returns information about the underlying
transmission protocol like baudrate, data
bits, parity and stopbits. Replaces the for-
mer protocol module!

18.2 Common extensions for all Views
The following modules or functions are working in all Views and also in the
editor sketch buffer (Sketch Example).
Please note! Some examples are nevertheless written for a specific View for a
better understanding. If so, the example comes with an according head line.

18.2.1 The base16 module
The base16 module provides you with two helpful encoding/decoding functi-
ons when you have to deal with telegram data transmitted in base16 (hex AS-
CII) format. This concerns in particular the Modbus ASCII protocol or SRecord
transmissions.

Function Description
decode Deciphers a base16 encoded data string and returns its binary

(original) content.
encode Converts a given Lua string to its base16 representation and

returns it as another string.

206

18.2. COMMON EXTENSIONS FOR ALL VIEWS

18.2.1.1 base16.decode
Converts the given base16 sequence back into its original binary represen-
tation and returns it as a string. The decoding will stop automatically when it
reaches the end of the passed string or when it encounters an invalid charac-
ter.

base16.decode(string)

• string: A base16 encoded data sequence.

ProtocolView Example

1 function out ()
2 −− e x t r a c t the b inary data o f a Modbus−ASCII te legram
3 local tg = telegrams . t h i s ()
4 −− A Modbus ASCII te legram s t a r t s w i th a colon ’ : ’ and ends wi th

CRLF.
5 −− The data i n between (byte 2 . . . t h i r d l a s t) i s coded i n base16
6 local bindata = base16 . decode (tg : s t r i n g () : sub (2 , −3))
7 end

18.2.1.2 base16.encode
You wont normally make use of this function, since it converts a Lua string in
its base16 representation. Nevertheless there may exist situations in which you
like to see a binary sequence in a base16 encoding. I.e. if you like to compare
a given known string with a result received by the analyzer.

base16.encode(string)

• string: A Lua string which has to be converted into base16.

Sketch Example

1 loca l seq = " h e l l o wor ld "
2 p r i n t (base16 . encode (seq)) −−> 40 20 00 00 00 00 03 E8
3 p r i n t (base16 . decode (base16 . encode (seq))) −−> Hel lo wor ld

18.2.2 The bit32 module
With the integration of Lua 5.3 the usage of the bit32 module becomes ob-
solete. We still provide it in the analyzer software for backward compatibility.
Therefore here the description of it.

bit32 is obsolete

But keep in mind, that we will remove the module sooner or later since the Lua
native bitwise operators are a lot easier to use and especially easier to read1.

A remark to the bit width: The bit32 module was limited to 32 bit (therefore the
name). Greater values are normalized to the remainder of its division by 232.
This is also valid for the new bitwise operators on Windows systems except for

1A bit32 module was introduced to Lua in version 5.2. Since Lua 5.3 bitwise operators are part
of the language itself.

207

KAPITEL 18. LUA ANALYZER EXTENSIONS

the Linux 64 bit program version, where integer operations are handled on a
64 bit base. And now, the description of the obsolete bit32 module:

On protocol or data level you will sometimes face the task to evaluate single bits
or to modify data bytes bit-wise (e.g. in the context with check sum evaluation).
The bit32 module expand the integrated Lua interpreter with the following
functions:

Function Description
band returns the bitwise AND of its arguments x1 and x2, for instance

bit32.band(0xFF,0x01)

bor returns the bitwise OR of its arguments x1 and x2, for instance
bit32.bor(0xFF,0x01)

bxor returns the bitwise exclusive or (XOR) of its arguments x1 and
x2, for instance bit32.bxor(0xFF,0x0F)

bnot The result is the logical negation of the single bits (also ones
complement). Each 1 is replaced by a 0 and vice versa. For
instance bit32.bnot(0x55)

lshift returns bitwise logical left-shift of its first argument x by the
number of bits given by the second argument n. For instance
bit32.lshift(0x100,2)

rshift returns bitwise logical right-shift of its first argument x by the
number of bits given by the second argument n. For instance
bit32.rshift(0x1FF,1)

Sketch Example

1 p r i n t (s t r i n g . format ("%X" , b i t 32 . band (0xFF , 0x03))) −−> 3
2 p r i n t (s t r i n g . format ("%X" , b i t 32 . bor (0x03 , 0x10))) −−> 13
3 p r i n t (s t r i n g . format ("%X" , b i t 32 . bxor (0x1001 , 0x1000))) −−> 1
4 p r i n t (s t r i n g . format ("%X" , b i t 32 . bnot (0x1001))) −−> FFFFEFFE
5 p r i n t (s t r i n g . format ("%X" , b i t 32 . l s h i f t (0x1000 , 2))) −−> 4000
6 p r i n t (s t r i n g . format ("%X" , b i t 32 . r s h i f t (0x4000 , 2))) −−> 1000

18.2.3 The functions bpack and bunpack
Both functions came originally from the Lua lpack library. They are still an inte-

bpack and bunpack are
obsolete!

grated part of the Lua interpreter in the analyzer software for backward compa-
tibility. But we will remove it sooner or later since Lua now gives you the same
functionality via its own string module.
The following description as long as section 18.2.4 about the necessary code
adaptions may help you to update your templates for future software versions.

The functions bpack and bunpack provide you with all necessary kind of
transformations you need to convert any byte sequence into a certain num-
ber type and visa versa.
bunpack is likely the function you need most. It works like the scanf function
in C. A given string or byte sequence is translated in one or more numbers

208

18.2. COMMON EXTENSIONS FOR ALL VIEWS

specified by an additional format string. Since Lua functions are not limited to
a single returning value, the conversion results can be assigned to several va-
riables in one step.
A third position parameter let you start a conversion from a different position
instead of the default first sequence byte.

pos , val1 , . . . = bunpack (sequence , format , p o s i t i o n)

The following list shows the most important format/transform specifiers defined
by the bunpack function. But the same conversion rules apply to bpack.

Format Description

b Interpret the next byte as a single unsigned byte (8-bit) value.

c Interpret the next byte into a single signed byte (8-bit) value.

d Convert the next 8 bytes into a double floating-point number (a
floating-point value with double precision or 64 bit).

f Interpret a series of 4 bytes as a floating-point number (32 bit).

H Convert the next 2 bytes into an unsigned short number (16 bit).

h Convert the next 2 bytes into a signed short number (16 bit).

I Convert a series of 4 bytes into an unsigned integer number (32
bit).

i Convert a series of 4 bytes into a signed integer number (32 bit).

> Interpret the sequence with the most significant byte first (big-
endian order).

< Interpret the sequence with the lowest significant byte first (little-
endian order).

bunpack(sequence, format, position=1)

• sequence: A Lua string which has to be extracted (unpacked) to one or
more numbers.

• format: The conversion format applied to the given sequence.

• position: The byte position where the conversion has to start. Default is
the first byte of the given sequence.

Imagine a Modbus-RTU ’Write Single Register’ command. The structure of the
telegram is thus (byte sequence):

Dev Fnc Reg HI Reg LO Value HI Value LO CRC HI CRC LO

This Modbus telegram commands a device to write a 16 bit number into a given
register specified by its 16 bit address. The register address is in the 3th and
4th byte, the register value in the 5th and 6th. The last two bytes contain the
CRC16 checksum. The bytes are arranged in big-endian order.
With bunpack you are able to extract the register address, register value and
CRC16 in one single step:

209

KAPITEL 18. LUA ANALYZER EXTENSIONS

ProtocolView Example

1 function out ()
2 −− e x t r a c t the b inary data o f a Modbus−ASCII te legram
3 local tg = telegrams . t h i s ()
4 −− assume i t s a Wri te S ing le Reg is te r te legram
5 local pos , dev , fnc , reg , val , c rc = bunpack (tg : s t r i n g () , " bb>H>H>H" , 1)
6 end
7 end

The conversion starts with the first byte in the sequence (position 1) and inter-
prets the following bytes according to the instructions in the format specifier.
Finally the function returns the position of the byte next to the last conversion
and fills the remaining variables on the left side with the results.

Dev Fnc Reg HI Reg LO Value HI Value LO CRC HI CRC LO

B B >H >H >H

Don’t worry about too few variables on the left side. Lua takes care and only
assigns results to the existing variables. So the following code is also correct
but lacks of the CRC16 checksum value.
loca l pos , dev , fnc , reg , va l = bunpack (tg : s t r i n g () , " bb>H>H>H" , 1)

bpack(format, value1, values2, ...)

• format: The conversion format applied to the given value(s).

• value1, values2, ...: A list of Lua numbers separated by a comma.

Example Sketch

1 seq = s t r i n g . dump(bpack ("> f > I " , 2 .5 , 1000))
2 p r i n t (seq) −−> 40 20 00 00 00 00 03 E8

Granted: You will need the bpack (or the new string.pack) only in rare
occasions - if at all. But consider you want to check the string representation of
a floating point number or a 64 bit long integer value. Then the string.pack
will prove itself as a very helpful and mighty function.

18.2.4 string.pack and string.unpack
As mentioned before: With the integration of Lua version 5.3 scripts/templates
now can use Lua’s own pack/unpack function pair. Both are part of the native
Lua string module. And when you look more closely, this makes sense since
the operation takes a string or results in s string.

The new string module functions are working nearly identical to bpack and
bunpack. Even the format specifiers are identical. You will find all details here:
http://www.lua.org/manual/5.3/manual.

The only difference you have to consider with regards the order of the parame-
ters and results between the old bunpack and new string.unpack functi-
ons. Here in comparison:

210

http://www.lua.org/manual/5.3/manual.html#6.4.2

18.2. COMMON EXTENSIONS FOR ALL VIEWS

pos , val1 , . . . = bunpack (sequence , format , p o s i t i o n)
val1 , . . . , pos = s t r i n g . unpack (format , sequence , p o s i t i o n)

The position parameter is optional in both cases!
The resulting pos is now the last result. And the format parameter is now the
first as it is already in the bpack and also string.pack function. Which is
just consistent. Adapted to our former ProtocolView example we get:

1 function out ()
2 −− e x t r a c t the b inary data o f a Modbus−ASCII te legram
3 local tg = telegrams . t h i s ()
4 −− assume i t s a Wri te S ing le Reg is te r te legram
5 local dev , fnc , reg , val , crc , pos= s t r i n g . unpack (" bb>H>H>H" , tg : s t r i n g ())
6 end
7 end

18.2.5 The checksum module
The checksum module always comes in handy when your protocol uses one of
the following checksum algorithms listed below (more will be added in the next
future).
All functions of the checksum module expect a Lua string as parameter and
generate the checksum by iterating over all data in the string relating to the
selected algorithm. The checksum is returned as a integer number.
Please note that some applications use a different order of the 16 bit value.
Modbus RTU telegrams for instance transmit first the low byte of the crc16
checksum, then the high byte.
See also section 13.3.2 in case your checksum isn’t listed here and you have
to write it by yourself.

Function Description
crc8_bacnet the 8 bit checksum as used in the BACNet (header) te-

legrams.
crc16_bacnet the 16 bit checksum as used in the BACNet protocol.
crc16_ccitt_kermit calculates the crc16 checksum of the given data string

using another start value as used in CCITT kermit.
crc16_df1 calculates the crc16 checksum of the given data string

as used in the Allen-Bradley DF1 protocol. The returning
result is a 16 Bit value.

crc16_dnp3 calculates the crc16 checksum of the given data string
as used in the DNP3 protocol. The returning result is a
16 Bit value.

lrc returns the checksum of the given data string calcula-
ted as Longitudinal redundancy check (used in Modbus
ASCII.

crc16_modbus calculates the Modbus RTU (CRC16) checksum of the
given data string and return it as a 16 bit integer.

18.2.5.1 checksum.crc8_bacnet
A checksum algorithm for BACNet (header) telegrams. The result is a single
byte (8 bit value).

211

KAPITEL 18. LUA ANALYZER EXTENSIONS

checksum.crc8_bacnet(String)

• String: the data as a string

Sketch Example

1 p r i n t (checksum . crc8_bacnet (" He l lo wor ld ")) −−> 157

Protocol Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 −− checksum header crc
4 local header_crc = checksum . crc8_bacnet (tg : s t r i n g () : sub (3 ,8))
5 . . .
6 −− checksum data crc
7 local data length = tg : data (6) * 256 + tg : data (7)
8 local data_crc = checksum . crc16_bacnet (tg : s t r i n g () : sub (9 , 9+

data length +1))
9 end

18.2.5.2 checksum.crc16_bacnet
The crc16 checksum algorithm for BACNet telegrams. The result is a 16 bit
integer value.

checksum.crc16_bacnet(String)

• String: the data as a string

Sketch Example

1 p r i n t (checksum . crc16_bacnet (" He l lo wor ld ")) −−> 20985

ProtocolView Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 −− checksum header crc
4 local header_crc = checksum . crc8_bacnet (tg : s t r i n g () : sub (3 ,8))
5 . . .
6 −− checksum data crc
7 local data length = tg : data (6) * 256 + tg : data (7)
8 local data_crc = checksum . crc16_bacnet (tg : s t r i n g () : sub (9 , 9+

data length +1))
9 end

212

18.2. COMMON EXTENSIONS FOR ALL VIEWS

18.2.5.3 checksum.crc16_ccitt_kermit
Returns the CRC16 CCITT (Kermit) checksum of the given data string as an
integer.

checksum.crc16_ccitt_kermit(String)

• String: the data as a string

Sketch Example

1 p r i n t (checksum . c r c 1 6 _ c c i t t _ k e r m i t (" He l lo wor ld ")) −−> 41426

ProtocolView Example

1 function out ()
2 −− the f o l l o w i n g code checks the content o f the e n t i r e message
3 −− except f o r the l a s t two byte (which are the checksum i t s e l f)
4 cks = checksum . c r c 1 6 _ c c i t t _ k e r m i t (te legrams . t h i s () : s t r i n g () : sub

(1 ,−3))
5 box . t e x t { cap t ion ="Checksum " , cks }
6 end

18.2.5.4 checksum.crc16_df1
The crc16 checksum algorithm for Allen-Bradley DF1 telegrams. The result is
a 16 bit integer value.

checksum.crc16_df1(String)

• String: the data as a string

ProtocolView Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 −− e x t r a c t the a p p l i c a t i o n data and s u b s t i t u t e DLE DLE
4 local data = tg : s t r i n g () : sub(6 ,−5) : gsub (‘ ‘ \ 0 1 6 \ 0 1 6 ’ ’ , ’ ’ \ 0 1 6 ’ ’)
5 −− checksum v a l i d a t i o n , the CRC16 i s ca l cu la ted from the STN (3 th

byte) ,
6 −− STX (5 th byte) , the a p p l i c a t i o n data AND the f i n a l ETX
7 local data = tg : s t r i n g () : sub (3 ,3) . . tg : s t r i n g () : sub (5 ,5) . . data . .
8 tg : s t r i n g () : sub(−3,−3)
9 local cks = checksum . crc16_df1 (data)

10 box . t e x t { cap t ion ="Checksum " , cks }
11 end

18.2.5.5 checksum.crc16_dnp3
Returns the CRC16 checksum according to the DNP3 specification of the given
data string as an integer.

checksum.crc16_dnp3(String)

213

KAPITEL 18. LUA ANALYZER EXTENSIONS

• String: the data as a string

ProtocolView Example

1 function out ()
2 −− the f o l l o w i n g code checks the content o f the e n t i r e message

except
3 −− f o r the l a s t two byte (which are the checksum i t s e l f)
4 cks = checksum . crc16_dnp3 (telegrams . t h i s () : s t r i n g () : sub(1 ,−3))
5 box . t e x t { cap t ion ="Checksum " , cks }
6 end

18.2.5.6 checksum.lrc
A checksum mechanism based on a Longitudinal Redundancy Checking as
used in Modbus ASCII transmissions. The result is a single byte (8 bit value).

checksum.lrc(String)

• String: the data as a string

ProtocolView Example

1 function out ()
2 −− i n Modbus ASCII each byte i s sent as a two ASCII charac te rs but
3 −− the checksum i s ca l cu la ted before encoding the message . So we
4 −− must decode i t f i r s t w i th base16 . decode
5 local bindata = base16 . decode (telegrams . t h i s () : s t r i n g () : sub(2 ,−3))
6 cks = checksum . l r c (b indata)
7 box . t e x t { cap t ion ="Checksum " , cks }
8 end

18.2.5.7 checksum.crc16_modbus
Returns the Modbus RTU checksum of the given data string as an integer.

checksum.crc16_modbus(String)

• String: the data as a string

The next example is for the editor sketch buffer again. We construct a Modbus
RTU master command in line 2 (Lua allows the input of any binary value as
decimal values via \ddd. Line 3 just serves to confirm our sequence in hex.
The checksum is calculated from the Modbus command except for the CRC16
checksum itself (the last two bytes). We use the Lua string.sub function to
extract all bytes less the last two. The checksum result is in a different byte
order because Modbus transmits the low byte first.

Sketch Example

1 −− Modbus RTU Read Holding Register , address = 2 , count = 5
2 seq = " \001\003\000\002\000\005\036\009"
3 p r i n t (seq : dump ()) −−> 01 03 00 02 00 05 24 09
4 cks = checksum . crc16_modbus (seq : sub (1 , −3))
5 p r i n t (s t r i n g . format ("%04x " , cks)) −−> 0924

214

18.2. COMMON EXTENSIONS FOR ALL VIEWS

ProtocolView Example

1 function out ()
2 −− c a l c u l a t e s the checksum over the whole telegram except f o r the
3 −− f o r the l a s t two byte (which are the checksum i t s e l f)
4 cks = checksum . crc16_modbus (telegrams . t h i s () : s t r i n g () : sub(1 ,−3))
5 box . t e x t { cap t ion ="Checksum " , cks }
6 end

18.2.6 The config module
The config module is rarely required and mainly intended to change internal
settings of the Lua interpreter. Since this internal settings are chosen with pur-
pose modifying them can leads to unexpected behaviours.
Nevertheless there are reasons to apply your own settings to the interpreter.
One - and actually the only available - parameter limits the number of opera-
tions for a script. Without limitation the interpreter may run in endless loops
leaving the application inoperable.

Note! cfg module renamed to config

In the analyzer version 5.0 the former cfg module is renamed to config
for a better understanding.

Consider the following code snippet:
1 while true do end

The line will never ends and blocking the whole program window. Thanks to the
MultiView concept, an active recording is not affected and all other open Views
will remain operable. Still it is annoying and forces you to end the given window
with the task manager.
To avoid this the internal Lua interpreter will stop the execution after a certain
amount of internal operations independent of the script.
The number of operations or command executions before the application beco-
mes inoperable depends on the processor power. Therefore we have chosen a
conservative value before the script execution is stopped.
It rarely happens, but in case of a very CPU extensive script, perhaps with so-
me data decryption and a complex Lua checksum code you may see an error
message like this:

Overrun of allowed executions!

You can produce this error by input the endless loop code above in the editor
sketch buffer!

By default the Lua interpreter aborts a script after 10000 internal execution
units which is sufficient for also more comprehensive template scripts. If your
script still needs more, increase the allowed executions by add the following
line at the beginning of your script:

1 con f i g . setmaxop (1000000)

The allowed range of execution numbers is 10000...1000000.

215

KAPITEL 18. LUA ANALYZER EXTENSIONS

18.2.7 The record module
The record let you query several information about the current or loaded re-
cord which may be necessary when your Lua code depends - for instance - on
the bus wiring or the analyzer type. It also provides you the record start time
and signal names.

Function Description
analyzer returns the used analyzer type.

0 : MSB-RS232, 1 : MSB-RS485,
2 : MSB-RS232-PLUS, 3 : MSB-RS485-PLUS

buswiring returns the selected bus wiring.
0 : 2-Wire-Tap, 1 : 2-Wire-Segment, 2 : 4-Wire-Tap,
3 : 4-Wire-Segment

signalnames returns all eight signalnames as a list from Signal1 to Si-
gnal8. For instance:
s1,s2,s3,s4,s5,s6,s7,s8 = record.signalnames()

starttime supplies the start time (date) of the current record as the so
called Unix time (represents the number of seconds elapsed
since 00:00:00 on January 1, 1970, Coordinated Universal
Time (UTC)).

18.2.7.1 record.analyzer
Returns the analyzer type currently used either in the loaded record or in the
active recording. This function is mainly intended to handle difference type of
analyzers (especially the new PLUS series) in your Lua scripts.

record.analyzer()

SKETCH Example

1 analyzers = {
2 [0] = "MSB−RS232" ,
3 [1] = "MSB−RS485" ,
4 [2] = "MSB−RS232−PLUS" ,
5 [3] = "MSB−RS485−PLUS"
6 }
7 p r i n t (analyzers [record . ana lyzer ()])

18.2.7.2 record.buswiring
Returns the current bus-wiring as set in the bus wiring dialog (only RS485
analyzer) or as it was stored in a reloaded record.

record.buswiring()

ProtocolView Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 i f record . buswi r ing () == 1 or record . buswi r ing () == 3 then

216

18.2. COMMON EXTENSIONS FOR ALL VIEWS

4 −− we can use the tg : d i r () to d i s t i n g u i s h between request and
response

5 end
6 end

18.2.7.3 record.signalnames
Returns the used signal names, either set in the loaded record or in the signal
settings of the control program.

record.signalnames()

SKETCH Example

1 loca l signames = { record . signalnames () }
2 p r i n t (signames [3]) −−> TxD

18.2.7.4 record.starttime
Returns the seconds since the Epoch (00:00:00 UTC, January 1, 1970). You
can format and display the result with the os.date function.

record.starttime()

ProtocolView Example

1 function out ()
2 local tg = telegrams . t h i s ()
3 local t = record . s t a r t t i m e () + tg : t ime ()
4 box . t e x t { cap t ion =" Date / Time " , t e x t = os . date ("%X %x " , t) }
5 −− r e tu rns something l i k e 08:50:44 16.04.2013
6 end

18.2.8 The string dump extension
This function let you ’hex dump’ the content of any Lua string. The function
works similar to the telegram:dump, but since it is not assigned to a certain
telegram, it allows you to hex dump for instance also the results of a base16
conversion.

18.2.8.1 string.dump
Creates a string summarizing (hex dump) of the string data as 2-digit hex or
3-digit decimal values separated by a specific character. The default number
base is hex (16) and the default separator is a space.

Please note! string.dump isn’t part of the common Lua language and only
works within the analyzer software!

string.dump(str, base, sep)

• str: The Lua string you want to hex dump.

• base: The used number base, default is hex (base 16).

217

KAPITEL 18. LUA ANALYZER EXTENSIONS

• sep: Replaces the default space separator with any character or string.
An empty string suppresses the separator completely.

ProtocolView Example

1 function out ()
2 −− access the cu r ren t te legram (a Modbus ASCII te legram)
3 local tg = telegrams . t h i s ()
4 −− conver t the telegram content i n i t s b ina ry rep resen ta t i on
5 local bindata = base16 . decode (tg : s t r i n g () : sub(2 ,−3))
6 −− show the complete telegram content as hex dump
7 box . t e x t { cap t ion =" Data (hex) " , t e x t = s t r i n g . dump(b indata) }
8 −− or i n a more ob jec t o r i e n t a t e d manner , dec output and ’ : ’

separa tor
9 box . t e x t { cap t ion =" Data (dec) " ,

10 t e x t =b indata : dump(bindata , 10 , " : ") }
11 end

18.2.9 The transmission module
Replaces the former protocol module!
Every time you need information about the underlying transmission protocol,
for instance the baud rate, the number of data bits, the parity settings, the
transmission module will come in handy.

protocol module renamed to transmission

In the analyzer version 5.0 the protocol module is renamed to transmis-
sion to avoid misconceptions with the protocol layer used in the Proto-
colView.

Function Description
baudrate Returns the baud rate used in the current recording or settings.
bitpause This function returns the time which is needed to send the gi-

ven number of bits. Profibus for instance uses a pause of 33
bits as a telegram delimiter.

bytepause This function returns the time which is needed to send the gi-
ven number of bytes. Modbus RTU for instance uses a byte
pause of 3.5 byte as a telegram delimiter.

databits Queries the used number of data bits. The result is a value in
the range 5...9.

parity Returns the parity setting of the current recording as following:
None = 0, Odd = 1, Even = 2, Mark = 3, Space = 4.

18.2.9.1 transmission.baudrate
Returns the baudrate as used in the current record or settings.

transmission.baudrate()

218

18.2. COMMON EXTENSIONS FOR ALL VIEWS

ProtocolView Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− s t a r t a new telegram a f t e r a pause of 33 b i t s
3 i f i n t v a l > 33 / t ransmiss ion . baudrate () then
4 return STARTED
5 end
6 return MODIFIED
7 end

18.2.9.2 transmission.bitpause
Returns the necessary time to send the number of the given bits.

transmission.bitpause(bits)

• bits number of paused bits.

ProtocolView Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− Pro f ibus s p e c i f i e s a pause of 33 b i t s as a telegram d e l i m i t e r
3 i f i n t v a l > t ransmiss ion . b i tpause (33) then
4 return STARTED
5 end
6 return MODIFIED
7 end

18.2.9.3 transmission.bytepause
Returns the necessary time to send the number of the given bytes.

transmission.bytepause(bytes)

• bytes number of paused bytes.

ProtocolView Example

1 function s p l i t (data , i n t v a l , a l t e r , s t r)
2 −− Modbus RTU s p e c i f i e s a pause of 3.5 bytes as a telegram

d e l i m i t e r
3 i f i n t v a l > t ransmiss ion . bytepause (3.5) then
4 return STARTED
5 end
6 return MODIFIED
7 end

18.2.9.4 transmission.databits
Returns the number of data bits (word length) as used in the current record.

transmission.databits()

219

KAPITEL 18. LUA ANALYZER EXTENSIONS

ProtocolView Example

1 function output ()
2 local tg = telegrams . t h i s ()
3 i f t ransmiss ion . d a t a b i t s () > 8 then
4 −− d iscards the 9 th b i t and and uses a warning red background
5 box . t e x t { cap t ion ="9 B i t " , t e x t = tg : data % 256 , bg=0xFF0000 , fg =0

}
6 else
7 box . t e x t { cap t ion ="8 B i t " , t e x t = tg : data }
8 end
9 end

18.2.9.5 transmission.parity
Please note! This function returns the specified parity settings of the record,
not the parity bit of an individual byte.

transmission.parity()

ProtocolView Example

1 function out ()
2 i f t ransmiss ion . p a r i t y () ~= 2 then
3 −− do something when p a r i t y i s not even
4 box . t e x t { cap t ion =" Warning " , t e x t ="We need an even p a r i t y " }
5 return
6 end
7 end

18.3 Lua modules for individual views
There are several Lua modules which only work in a specific view (the cur-
sive listed module in the overview table at the beginning of this chapter). For
instance: The box and telegrams modules need the environment of the Pro-
tocolView to access and display the transmitted telegrams.
The same applies for the databytes module. It is intended to provide you a
random access to every recorded byte and cannot executed outside the Data-
View.

All of them are closely linked with the according view. We therefore explain
them in detail in the according View chapters.

box module see 13.8.1
telegrams module see 13.8.8
databytes module see 11.7
debug module see ProtocolView 13.8.2 and DataView 11.7.2

220

19
Lua Protocol dialogs

The design of the Lua protocol template provides an uttermost
degree of flexibility. But it lacks of an interactive way to change
the behaviour of the applied template. For instance to adapt
certain protocol parameters or search/filter rules.
An easy to use Lua GUI framework fills this gap.

Imagine you have a Modbus RTU transmission with a different interframe delay
time. This is not uncommon but forces you to adapt the Modbus template code
every time you have to deal with such one. This becomes especially annoying
when you analyse several Modbus transmission with different specifications.
Another example is the IEC60870-5-101 protocol which exists in at least two
variants. One with a single address byte, a second one using two address by-
tes instead.
Every time you need a different protocol setup you have to open the template
editor, search for the according code line and modify it to your needs. You can -
of course - maintain various versions of the same template which may varying
only by a constant value, but this only a poor solution in the absence of a better
way.

What we need is a flexible way to define protocol specific parameters without
touching a single code line, in other words a graphical user interface.
It is clear, that every user interaction depends on the currently selected proto-
col template. A Modbus parameter setup is obviously different from - let’s say
- Profibus settings. Thus the implementation of any graphical user interface
(GUI) must be part of the according protocol template. In particular because
every user interaction affects the current telegram display.

The ProtocolView allows you to write/program your own setup dialog in the tem-
plate itself and open/start it by clicking the ’Setup’ button below the telegram
window.
A simple dialog contains only one or a few elements. But you can also write
dialogs with as many elements you want. Some elements may be even linked
together, which means: The appearance of a element changes depending on
other elements. For example: Disable an element if another one has a certain
value.
And you will have to choose if an user interaction only affects the visible te-
legrams (e.g. switch between a hex or decimal checksum display) or if it is

221

KAPITEL 19. LUA PROTOCOL DIALOGS

necessary to parse the whole data stream again because the split condition
has changed.

19.1 How does it work?
Before we start to explain the writing of dialogs in detail, here an short overview
how a typical dialog looks like and how you can use it to pass parameters to
your protocol template.

Every scripted Lua dialog is encapsulated in a special dialog frame, providing
you with the dialog content and - the most important thing - an ’Apply’ button.
The latter invokes that part of the Lua code which passes the input parameters
to the template and triggers a new evaluation and/or refresh of the protocol
window. According to this every dialog consists of two main parts:

1 The Lua function dialog is holding the code for the graphical user interface.
2 The Lua function apply is called by the ’Apply button and updates the protocol

window.

A dialog can - of course - consist of a lot more functions. But these two above
are essential for every functional ProtocolView dialog.
The ProtocolView executes the dialog function with an independent Lua in-
terpreter every time you click the Setup button. This separates the GUI from
the data stream evaluation.
In the apply function you ask the dialog elements for their current entry (made
by the user) and pass the result to the protocol script afterwards.

19.2 The dialog framework
Wherever GUIs (Graphical User Interface) are concerned, one of the first ques-
tions is always: How to arrange the several control elements?

There are various approaches to put controls together. One is to position them
absolutely by specifying position and size. But this would be cumbersome and
laborious.
The analyzer software uses a more elegant way to align your controls more
or less in an automatic way. For this it covers the dialog area with an invisible
grid. The grid is not limited in width and height and the columns width and row
height are automatically adapted to the controls size.
You can imagine the grid like a letter (or type) case. Every box in it can contain
a single control. Whereby a single control also can span across several hori-
zontal grid cells. By arranging your controls in columns and rows you are able
to produce nice and user-friendly graphical interfaces.

To place a control in a certain box, simply pass the column and row index. The
invisible grid expands as necessary and adapts the width of the column (or
height of the row) to the needed size of the placing control.

And more: If you want to replace an element in a box (for instance to adapt the
element after an user interaction), just overwrite the existing one by putting the

222

19.3. ADD A TEMPLATE DIALOG

new element into this box (or cell). Consider the following figure:

0

15

First byte

Last byte

Dialog headline

Col1 Col2

Row1

Row2

Row3

This little dialog consists of two columns and three rows which gives you a grid
of 2 x 3. It serves as an input of a range of numbers defined by a first and last
byte. The first row is completely occupied by a headline (using an additional col
span=2 parameter).
The second row has a text label ’First Byte’ in the left (first) column and a so
called Spin Control to pass a number value by increment or decrement the in-
put on the second column.
The third row is to specify the last byte by again a text label ’Last byte’ and
another Spin Control to pass the last byte value.

Not used grid cells between elements stay empty. This gives you an easy way
to group controls together by keep them spatially away from others.

And that is the corresponding Lua code:

1 function d ia log ()
2 −− the headl ine l a b e l spanned over two columns
3 widgets . Label { name=" headl ine " , t e x t =" Dia log headl ine " ,
4 row=1 , co l =1 , span=2 }
5 −− l a b e l and f i r s t byte i npu t c o n t r o l
6 widgets . Label { name=" labe l1 " , t e x t =" F i r s t byte " , row=2 , co l =1 }
7 widgets . Sp inC t r l { name=" f i r s t " , row=2 , co l =2 ,
8 min=0 , max=255 , value=0 }
9 −− l a b e l and l a s t byte i npu t c o n t r o l

10 widgets . Label { name=" labe l2 " , t e x t =" Last byte " , row=3 , co l =1 }
11 widgets . Sp inC t r l { name=" l a s t " , row=3 , co l =2 ,
12 min=0 , max=255 , value=15 }
13 end

Don’t worry, if you have some difficulties to understand this script. We will ex-
plain all details later. Here it should give you only a first impression how easily
you can implement a dialog with a few code lines.

19.3 Add a template dialog
All the coding for your dialog has to be done in the function dialog. This is the
only function which the Lua dialog interpreter executes when it evaluates the
GUI (graphical user interface).
In case of more complicated user interfaces, you can outsource part of the co-
de into other functions. But each of them has to be called at least from within
the dialog context.
The supported graphical elements are pooled all in one module named widgets.
A module in Lua is like a library in other programming languages. You can ima-

223

KAPITEL 19. LUA PROTOCOL DIALOGS

gine it as a collection of functions which deal especially with widgets.
To call a certain module function, Lua expects the module name, followed by a
dot and the function name. For a button it’s like this:

1 widgets . Button { PARAMETER . . . }

New language features are best explained with an example. Open the dialog
tutorial project in the examples folder (Tutorial-Dialogs). You can either
double click it with your file explorer or first start the analyzer program and click
’Examples’ in the file menu of the control program. Choose the Tutorial folder
and open the project file. Depending on the selected analyzer on start the pro-
gram may ask you to restart with the according type.
I assume that you know the example from our template lesson in the Protocol-
View chapter (see 13.3.2). If not, please read it first.

Now let’s start with an empty dialog. At first this is nothing else than an empty
or even not existing dialog function.

Empty dialog

1 function d ia log ()
2 end

If you click Setup in the ProtocolView you will get a dialog as shown on the left.
The dialog is still empty and therefore displays a default title and a note with a
link to the according manual chapter (this one).
You can add the dialog function at any point in the template except for inside
another function (which is allowed by Lua). But we recommend to put all GUI
code at the end. The content of the function block is not limited to widget func-
tions alone. You can do all kind of Lua coding here, but avoid time-consuming
stuff, otherwise your dialog will become inoperable.

19.3.1 Add widgets elements to your dialog
In our example transmission a master requests temperature, moisture and
pressure from three sensors. The telegram rules are simple and similar to Mod-
bus ASCII. Every telegram starts with a colon ’:’ and ends with a carriage return
linefeed (CRLF). It looks like:

Time
2.339189

SOF
:

Address
2

Function
Moisture

Checksum
C4

EOS
0D 0A

Time
2.351468

SOF
:

Address
2

Function
Moisture

Value
58.52%

Checksum
7D

EOS
0D 0A

We already discussed how to display the data optionally in metric or Anglo-
American format in chapter 13.4.2 and solved it by using a filter.
This time we will use a real dialog to apply some individual settings to our pro-
tocol template. We will start with a switch between metric and Anglo-American
unit output.
A single selection between two or more options is usually realized by using a
so called radio box. Add the following code at the end of the Tutorial template:

1 function d ia log ()
2 widgets . RadioBox { name=" u n i t " , co l =1 , row=1 ,
3 l a b e l =" Un i t "
4 choices = { " Met r i c " , " Anglo−American " } }
5 end

224

19.3. ADD A TEMPLATE DIALOG

Every widget needs at least an unique name and a position specified by a co-
lumn and row value. For the moment you only have to know that the name must
be singular because we need it for accessing the widget data later.
Save your modifications and click the Setup to test the dialog.

Test your dialog

You can always test you dialog by clicking the Setup button after sa-
ving your code modifications.

The dialog shows the radio box and you can switch between the two physical
units. At the moment it doesn’t make any effects to the telegram output because
the script itself has no idea what you did in the dialog.
Passing the result of the user interaction to the script is subject in the next
session. We will stay a little longer and discuss some aspects regarding the
arrangement and usability of widget objects.

Dialog with radio box

To do so, we first add an additional text (description) above the radio box and
corrected the row parameter of the radio box which is now displayed in the
second row (the first row now belongs to the label widget).

1 function d ia log ()
2 widgets . Label { t e x t =" I n d i v i d u a l t u t o r i a l p ro toco l s e t t i n g s " ,
3 co l =1 , row=1 }
4 widgets . RadioBox { name=" u n i t " ,
5 l a b e l =" Un i t " ,
6 co l =1 , row=2 ,
7 choices = { " Met r i c " , " Anglo−American " } }
8 end

The result is shown on in the picture ’Dialog with radio box’.
The dialog mechanism tries to use the smallest space for every widget by
default. As you can see in the picture, the radio box consumes only a part
of the available width. This not only looks ugly, it is no good usability style too!
You can instruct the ’arrangement’ mechanism known as sizer to use all space

Filled radio box

with the widgets parameter fill=true.

1 function d ia log ()
2 widgets . Label { t e x t =" I n d i v i d u a l t u t o r i a l p ro toco l s e t t i n g s " ,
3 co l =1 , row=1 }
4 widgets . RadioBox { name=" u n i t " ,
5 l a b e l =" Un i t " ,
6 co l =1 , row=2 , f i l l =true ,
7 choices = { " Met r i c " , " Anglo−American " } }
8 end

That looks better! The radio box now uses (fills out) the whole width of the dia-
log, here specified by the length of the text in the Label widget.
The current dialog arrangement is a grid with one column and two rows. But
how do we ’span’ a widget over several columns? The fill parameter is limi-
ted to a single ’cell’ in the grid.
We indicated an according span parameter in the framework introduction 19.2.
For a better understanding let us add a further widget to choose between se-
veral EOS settings. (Just in case, our telegram specification allows different

225

KAPITEL 19. LUA PROTOCOL DIALOGS

EOS like CRLF, LF, CR or LFCR). The appropriate widget for such a thing is a
Choice element.

1 function d ia log ()
2 widgets . Label { t e x t =" I n d i v i d u a l t u t o r i a l p ro toco l s e t t i n g s " ,
3 co l =1 , row=1 }
4 widgets . RadioBox { name=" u n i t " ,
5 l a b e l =" Un i t " ,
6 co l =1 , row=2 , f i l l =true ,
7 choices = { " Met r i c " , " Anglo−American " } }
8 widgets . l a b e l { t e x t =" Telegram EOS" ,
9 co l =1 , row=3 }

10 widgets . Choice { name="eos " ,
11 co l =2 , row=3 , f i l l =true ,
12 choices = { " LF " , "CR" , "LFCR" , "CRLF" } }
13 end

Since the Choice element does not provide us with a label, we put a Label
widget in column 1 and assign the Choice to column 2 (line 9 and 11).

Dialog grid 2 x 3 The framework works exactly as instructed. All elements except for the EOS
selection (Choice) are arranged in the left (first) column and the EOS chooser
in the right column (two) - which looks not so good (see the picture on the left).
Here comes the span parameter into play. We can force the top label and the
radio box to cover more than one column by adding the argument span=columns
to the widget call. The following listing shows the improved code (line 3 and 6)
and the resulting dialog appearance:

Dialog improved

1 function d ia log ()
2 widgets . Label { t e x t =" I n d i v i d u a l t u t o r i a l p ro toco l s e t t i n g s " ,
3 co l =1 , row=1 , span=2 }
4 widgets . RadioBox { name=" u n i t " ,
5 l a b e l =" Un i t " ,
6 co l =1 , row=2 , f i l l =true , span=2 ,
7 choices = { " Met r i c " , " Anglo−American " } }
8 widgets . Label { t e x t =" Telegram EOS" ,
9 co l =1 , row=3 }

10 widgets . Choice { name="eos " ,
11 co l =2 , row=3 , f i l l =true ,
12 choices = { " LF " , "CR" , "LFCR" , "CRLF" } }
13 end

The underlying framework resizes all elements to fit best in the available space.
This accomplished, we can turn our attention to the question, how to pass the
settings in the dialog to the part of the code which splits the data stream in
single telegrams and displays the telegram content. First we must query the
user inputs from the dialog elements.

19.3.2 Apply the user settings
We already mentioned that each widget element needs an unique name. This
is not entirely correct because all Label elements in our example lacks of any
individual name. A widget only needs a unique name in case you want to ac-
cess the object later. Labels are in most case not a subject of user interaction.
In contrary we must be able to read the internal state of a radio box to fetch its
current value.
In our example the user can change the unit and/or the EOS sequence. We
wrote in the introduction, that the dialog function is usually escorted by the
apply function which is triggered every time the user clicks the dialog Apply

226

19.3. ADD A TEMPLATE DIALOG

button. This is the first place to query the user input and pass the values to the
code responsible for the telegram evaluation and output.
We begin with the code:

1 function apply ()
2 u n i t = widgets . GetValue (" u n i t ")
3 eos = widgets . GetValue (" eos ")
4 debug . c l ea r ()
5 debug . p r i n t (" Un i t = " . . un i t , "EOS= " . . eos)
6 end

The function queries the current selection (value) of the radio box and the se-
lected choice item and assign them to the global values unit and eos. Note!
All Lua variables are global if not declared otherwise with the keyword local!
In line 5 we output both values in the debug output window after we cleared the
debug window in line 4. Just open the debug window in the ’View’ menu or with
Ctrl + Alt + O to see the result. Every time you click the apply button, the

script updates the values in the debug window. This makes the debug window
a very valuable tool during the process of code writing.

The sensor number value is formatted in the function GetFunctionValue().
For a switching between the two units ’Metric’ and ’Anglo-American’ we must
first extend the function to handle Anglo-American units too.

1 function out (f i l t e r)
2 −− sk ip unchanged code here
3 function GetFunct ionValue (number , value)
4 i f u n i t == " Met r i c " then
5 local formats = { "%.2 fC " , "%.2 f %%", "%imBar " }
6 return s t r i n g . format (formats [number] , value)
7 else
8 −− convers ion f a c t o r f o r Temparature , Moisture and Pressure
9 local formats = { "%.2 fF " , "%.2 f %%", "%.2 f p s i " }

10 convs = {
11 −− f u n c t i o n to conver t c e l s i u s to f a h r e n h e i t
12 [1] = function (c) return c * 1.8 + 32 end ,
13 −− the mosi ture i s always i n percent
14 [2] = function (m) return m end ,
15 −− f u n c t i o n to conver t mbar to ps i
16 [3] = function (p) return p * 0.01450377 end
17 }
18 return s t r i n g . format (formats [number] ,
19 convs [number] (value))
20 end
21 end

We explain this code in detail in section 13.4.2.
In line 4 we test the value of the global unit variable. If it is ’Metric’ we format
it as before. Otherwise we convert the temperature to Fahrenheit and the pres-
sure to psi. The moisture is always in percent.
Now click Setup and switch between the two unit systems. Don’t forget to
click the ’Apply’ button in the dialog to trigger the apply function.

You will observe - nothing! With the exception that the units are now Anglo-
American nothing happens! What’s wrong?

We can assure you, that the code is correct. But we have omitted a small,

227

KAPITEL 19. LUA PROTOCOL DIALOGS

nevertheless important detail. (We did it on purpose!) The template script is
executed by different Lua interpreters each with its own global variables. One
interpreter is responsible for the GUI (executing the dialog and apply functi-
ons). This one owns the global variables unit and eos. The interpreter hand-
ling the telegram display by running the output function does not know the
variable unit. From it’s point of view unit is nil which leads to the execution
of the else block.

Interesting, isn’t it? But it surely is not the answer you may expected. So let us
explain the reasons for this implementation and the details behind before we
come back.

19.3.3 Passing data between dialog and script
Since the parsing of the data stream (in the split and output function) is
handled by different Lua interpreters, you cannot simply use a global Lua va-
riable to share data between the dialog functions and the rest of the template
script. This initially seems rather unusual but it really make sense if you consi-
der, that the evaluation of the incoming data must not under any circumstances
be stopped when operating the dialog!
It also provides a clear separation between the actual protocol code and the
user interface and keeps the interpreter running the split function lean and
thus also very fast.
So even if you use a global variable x in the split, output and apply func-
tion, they are - in reality - four different variables!

Realize that every protocol template is executed by four!! Lua interpreters. The
first two run the split function to divide the data stream into telegrams. One
interpreter for each direction. The third calls the output function to display the
telegrams in the telegram window. And the fourth interpreter runs the GUI by
executing the display function. All of them are running independent of each
other.
But even if there are the independent interpreters, they all share the same code
which makes it easy to reuse special functions in all four environments.

This design makes the ProtocolView not only very robust against code failures,
it also avoids the unintentional mixing when using global variables (which is a
common problem with globals in other languages too).
But how can we shared data between two (or more) Lua instances if global
variables are not an option? Or to be more precise: How can we pass the data
from the GUI code to the rest of the template?

The widgets module provides a simple mechanism to share any kind of Lua
data types (number, string, boolean) with the other interpreters. It is realized as
an anonymous table belonging to the widgets module. As soon as you create
a variable as part of widgets module name space the variable is automatically
accessible by the other interpreters. For instance:

1 function apply ()
2 widgets . u n i t = widgets . GetValue (" u n i t ")
3 widgets . eos = widgets . GetValue (" eos ")
4 end

228

19.3. ADD A TEMPLATE DIALOG

If we make the same modification to the GetFunctionValue the number for-
mat will change every time we select a different unit and click Apply .

1 function out ()
2 . . .
3 function GetFunct ionValue (number , value)
4 i f widgets . u n i t == " Met r i c " then
5 local formats = { "%.2 fC" , "%.2 f %%", "%imBar " }
6 return s t r i n g . format (formats [number] , value)
7 else
8 . . .
9 end

Since the user input is hold in a table, it is also easy to provide two simple
functions to load or save the current dialog state (the settings made by the
user) with a single function call. More in section 19.3.7.

19.3.4 Refresh or reload
Changing the system unit only effects the display of the telegrams. The te-
legrams considered as a certain sequence of data bytes do not change. All
telegrams start and end at the same position in the data stream independent
of the unit settings. This means:
The apply function only triggers a refresh of the visible telegrams in the tele-
gram window. This is the default behaviour.
It’s now time to attend to the remaining widget element in our dialog. The EOS
selection.
The four items in the Choice widget stand for: LF, CR, LFCR and CRLF (which
is used by the tutorial) and must be pass to the split function. But before we
can use them, we must replace the selection text with the proper EOS se-
quence. In Lua LF is coded as "\n", CR as "\r". C(++) programmer knows
them.

1 function apply ()
2 local t = {
3 [" LF "] = " \ n " ,
4 ["CR"] = " \ r " ,
5 [" LFCR "] = " \ n \ r " ,
6 [" CRLF "] = " \ r \ n "
7 }
8 widgets . u n i t = widgets . GetValue (" u n i t ")
9 widgets . eos = t [widgets . GetValue (" eos ")]

10 return "RELOAD"
11 end

The local table t maps the choice selection into the right character sequence
as shown in line 9.
Line 10 is new. So far we did not return any value which leads to the default
behaviour, namely to refresh (redraw) the visible telegrams. Changing the EOS
is different because it affects start and end of every telegram - and not only the
visible ones. With other words: The ProtocolView must reload and parse again
the whole data stream! Returning "RELOAD" exactly does what it says.
In a last step we must apply the selected EOS string to the split function -
which is easy. Just replace the line:

1 i f s t r : f i n d (" \ r \ n ") then return COMPLETED end

with:

229

KAPITEL 19. LUA PROTOCOL DIALOGS

1 i f s t r : f i n d (widgets . eos) then return COMPLETED end

The script reacts now as expected. You can switch between the two unit sys-
tems and select different EOS strings. There is only one small downer: Whether
we change only the units or the EOS too, the ProtocolView always reload the
whole data. This can be very annoying if you are analysing real huge records
of several GBytes and the reload takes some time.
A much better approach would be to limit the reload for cases where the un-
derlying telegram data has changed. For instance a different EOS. And simply
refresh the display when the user action only effects the telegram output.
In our example it would be nice to see the selected unit immediately when the
user clicks the unit radio box. How we can achieve this is subject of the next
section.

19.3.5 Defining element action handlers
The dialog framework offers an easy to understand mechanism to bind an ac-
tion handler to a certain widget. An action handler is a function which is called
every time a widget element is clicked, selected, modified or similar. It is also
known as a ’callback’ function.
They are particular useful when a user interaction demands an immediate re-
action. Examples are the click of a button or the adaption of other elements
depending on an user input. Or simply to update the representation of the visi-
ble telegrams which takes us back to our example.
How can we add an action handler or callback function to the radio box in our
dialog? The dialog framework defines a callback as follows:

function callback_NAME (value)
−− do something

end

The important detail here is NAME. It reflects the name of the widget you want
to have an action handler for1. As soon as you have added a callback function
for a given widget, it will be executed every time the user interacts with it.
In our example the necessary functions are named as callback_unit. See
the listing below:

function c a l l b a c k _ u n i t (s t a t e)
debug . p r i n t (s t a t e)
widgets . u n i t = s ta te

end

The internal callback mechanism always passes the current widget state or se-
lection as a Lua string. The string type was choose to cover all different widget
inputs. Imagine a callback for a text input, or a list control.
Here it is more than convenient. We just have to assign the passed radio box
state (’Metric’ or ’Anglo-American’) directly to the global widgets.unit varia-
ble and - voila - the shown unit in the telegram output changes with every click
of the radio box2

The debug output is only for testing purpose and to give you an idea, how to
check the parameter of the callback function.
Just remember, that this parameter is always a Lua string!

1And another reason to choose the widget name carefully!
2The framework triggers a refresh of the display after every callback.

230

19.3. ADD A TEMPLATE DIALOG

Although Lua makes a lot of type conversion automatically, there is sometimes
no alternative than to convert a string into a number by ourselves. In particular
if Lua doesn’t know (and cannot predict) which kind of variable we want it to act
on. In such cases use the following string to number conversion:

x = tonumber (s t r i n g)

19.3.6 Initialize dialog variables
So far we didn’t waste a thought about the initial values of the dialog variables.
But our script will remind us as soon as we clone the current ProtocolView. Just
press Ctrl + Shift + N .
The new ProtocolView gives you an error bad argument #1 to find... in
your script. What happens here?
Let us summarize how Lua interprets your script.
When you open a new ProtocolView or select a new template, the very first code
which is executed is the split function because further action depends on
a correct separation of the recorded data stream in single telegrams. In our
example:

function s p l i t (data , i n t v a l , a l t e r , s t r)
i f # s t r == 1 then return STARTED end
i f s t r : f i n d (widgets . eos) then return COMPLETED end
return MODIFIED

end

In the split function we call find with the value of the widgets.eos va-
riable to search for an equal EOS. The module widgets is accessible by the
interpreter which runs the split code. But until you apply the dialog settings
the anonymous table in the widgets module does not contains a variable with
the name eos! This variable will be created first when execution the apply
function.
As a result str.find is called with a nil value and produces consequently
the given error message.
You can convince yourself by open the dialog and click ’Apply’. The ProtocolView
now shows the telegrams as expected.

In order to prevent the Lua interpreter from accessing a not existing or invalid
variable you must first declare and initialize it! In our case it’s enough to assign
an initial value to every dialog value in the global name space (outside of every
function).

widgets . eos = " \ r \ n "

function s p l i t (data , i n t v a l , a l t e r , s t r)
i f # s t r == 1 then return STARTED end
i f s t r : f i n d (widgets . eos) then return COMPLETED end
return MODIFIED

end

With it the ProtocolView splits all telegram after it received an CRLF - at least
until the user decides otherwise.

But a correct initialization does not only affects the splitting of the data stream.
The output function too accesses a dialog variable, here the widgets.unit

231

KAPITEL 19. LUA PROTOCOL DIALOGS

which is nil as long as you do not initialize it.
Lua does not issue an error because comparing a nil value is allowed. In our
case the line:
i f widgets . u n i t == " Met r i c " then

returns false and therefore the telegram output shows Anglo-American units.
So it is always a good practice to initiate all dialog values at the beginning of
your template.
widgets . eos = " \ r \ n "
widgets . u n i t = " Met r i c "

Initialize all dialog variables

To avoid errors caused by not existing dialog variables declare and in-
itialize them first at the beginning of your script!

You will observe, that your dialog always starts with the same settings indepen-
dent of your last selection. This becomes understandable when you consider
that there is no code which preset the dialog elements according your last in-
put. When you click the Setup the ProtocolView starts a new Lua interpreter
executing the dialog function. This interpreter exists only for the time you in-
teract with your dialog and ends when you close it.
It is your responsibility as a programmer to preset the dialog elements (dialog
settings). Luckily this is very easy as we will explain in the next section.

19.3.7 Dialog settings
With dialog settings we mean all changeable parameters the user can influ-
ence in the dialog. We already worked out how the user input has to apply to
the protocol processing. Now we will focus on the other way round. To preset
the dialog elements to their last state.
Even though the Lua interpreter running the dialog cease to exist when the dia-
log is closed, the state of the user input was transferred to the widgets.eos
and widgets.unit before. We did so in the apply function and the unit call-
back callback_unit.
The first thing we have to do is to initialize all changeable elements in the dialog
with these values in the dialog function.

1 function d ia log ()
2 widgets . Label { t e x t =" I n d i v i d u a l t u t o r i a l p ro toco l s e t t i n g s " ,
3 co l =1 , row=1 , span=2 }
4 widgets . RadioBox { name=" u n i t " ,
5 l a b e l =" Un i t " ,
6 co l =1 , row=2 , f i l l =true , span=2 ,
7 choices = { " Met r i c " , " Anglo−American " } }
8 widgets . Label { t e x t =" Telegram EOS" ,
9 co l =1 , row=3 }

10 widgets . Choice { name="eos " ,
11 co l =2 , row=3 , f i l l =true ,
12 choices = { " LF " , "CR" , "LFCR" , "CRLF" } }
13 −− i n i t i a l i z e d ia log elements w i th t h e i r l a s t s e t t i n g s
14 widgets . SetValue (" u n i t " , widgets . u n i t)
15 local t = {
16 [" \ n "] = "LF " ,
17 [" \ r "] = "CR" ,

232

19.3. ADD A TEMPLATE DIALOG

18 [" \ n \ r "] = "LFCR" ,
19 [" \ r \ n "] = "CRLF" ,
20 }
21 widgets . SetValue (" eos " , t [widgets . eos])
22 end

Please note! We must convert the current EOS sequence back to the items
shown in the eos selector as we did the other way when assign the selection to
widgets.eos.

If you save and try the script it nevertheless shows always the initialized values
in the dialog which are for the unit ’Metric’ and for the EOS the CRLF. This is
not really a surprise because we assigned exactly these values when initiali-
zing the widgets.eos and widgets.unit variables at the beginning of our
script.
When Lua runs the dialog function it also evaluates all other ’reachable’ code
in the script - amongst others the assignment of the widgets dialog values.
This happens even if the variables already exist.

The second thing is therefore to prevent an initialization of the variables if Lua
already knows them.

i f not widgets . eos then
widgets . eos = " \ r \ n "

end
i f not widgets . u n i t then

widgets . u n i t = " Met r i c "
end

With those changes the dialog now acts like expected. You can change the
settings and as soon as you reopen the dialog it reflects the current template
parameter.

19.3.8 Save dialog settings between sessions
You can instruct the dialog framework to store all widgets variables (contai-
ning the dialog settings) in a file so you can restore the settings when reopen
the ProtocolView later. The file name is built from the current record name with
the extension msbini and then stored in the same folder as your template.
All you have to do is to add the following line at the end of your apply and
callback_unit function3

widgets . SaveSett ings ()

To restore the settings call the counterpart after you have initialized the widgets
variables:

i f not widgets . eos then
widgets . eos = " \ r \ n "

end
i f not widgets . u n i t then

widgets . u n i t = " Met r i c "
end
widgets . LoadSett ings ()

3Just everywhere you apply the settings!

233

KAPITEL 19. LUA PROTOCOL DIALOGS

Please note the order! You should always initialize the widgets variables first
before you call widgets.LoadSettings(). This makes sure, that the varia-
bles are valid even if the settings file does not exist4.

msbini file naming
You may wondering why the msbini file name is derived from the record file
and not from the template name. The answer is simple: Consider for example
two different tutorial records. The first one with CR as EOS, the second with LF
as EOS. It is clear, that we need two independent msbini files, otherwise we
must always correct our settings when we switch between the two record files.

19.4 More positioning and interaction
As mentioned before, all widgets in the dialog are organized by an invisible
grid. You can pass the position (specified by the column and row) directly (as
seen in the example code in the previous section) or as a result of a former
computation. This also applies to all other widget parameters.
Imagine you want a 3x3 grid of buttons. A first approach will lead you probably
to something like this:

1 function d ia log ()
2 widgets . Button { name="B1 / 1 " , l a b e l ="B1 / 1 " , co l =1 , row=1 }
3 widgets . Button { name="B2 / 1 " , l a b e l ="B2 / 1 " , co l =2 , row=1 }
4 widgets . Button { name="B3 / 1 " , l a b e l ="B3 / 1 " , co l =3 , row=1 }
5 widgets . Button { name="B1 / 2 " , l a b e l ="B1 / 2 " , co l =1 , row=2 }
6 . . .
7 end

But instead of writing nine lines of widgets.Button{...} code, you can
achieve this more easier by creating the buttons in a loop.

1 function d ia log ()
2 for row=1 ,3 do
3 for co l =1 ,3 do
4 local s = "B " . . co l . . " / " . . row
5 widgets . Button { name=s , l a b e l =s , row=row , co l=co l }
6 end
7 end
8 end

An interesting part of this little code snippet is line 4. Since Lua handles dif-
ferent kinds of variables like numbers or string almost automatically, it’s very
easy to build a string from different values. Here we are using the Lua string
concatenation operator .. to create an unique name s from the buttons co-
lumn and row position. Every name starts with a uppercase ’B’ (a string), the
column (Lua converts the column number to a string for you), followed by the
separator ’/’ and the row.
The resulting variable s is then assigned to the button name and label in line 5.

An example of how to use this technique to create nice looking dialogs is the
Tutorial-Calculator. The template script contains a small but neverthe-
less full functional calculator. There is no further usage. It’s only purpose is to
demonstrate some advanced techniques with the Lua framework.
Here is the code for the dialog.

4Which is the case until the user applies your dialog.

234

19.4. MORE POSITIONING AND INTERACTION

1 function d ia log ()
2 widgets . T e x t C t r l { name=" d i sp lay " , co l =1 , row=1 , span=4 , f i l l =true ,
3 datatype=DEC_NUMBER }
4 local l a b e l s ={ " 7 " , " 8 " , " 9 " , " x " ,
5 " 4 " , " 5 " , " 6 " , " / " ,
6 " 1 " , " 2 " , " 3 " , "+ " ,
7 " 0 " , " . " , " = " , "−" }
8 local i = 1
9 for y=2 ,5 do

10 for x=1 ,4 do
11 widgets . Button { name= l a b e l s [i] , l a b e l = l a b e l s [i] , co l=x , row=

y }
12 i = i + 1
13 end
14 end
15 widgets . Button { name=" Clear " , l a b e l ="C/CE" , co l =1 , row=6 }
16 end

Simple calculator

In the calculator example we combine a hard-coded position for the calculator
display (line 2...3) and the ’Erase’ key C/CE (line 15). The display itself is span-
ned over all four columns (span=4).
The number and operator keys are arranged in a 4x4 grid and will be created
in a loop (line 9...14). Since the TextCtrl occupies the first row, we start with
row 2 and iterate until row 5 was finished.
Each row has four columns and the inner loop in line 10 reflects this by coun-
ting from1 to 4.
Line 4...7 specify the name and labels for the button which we assign in line 11.
All in all, the whole user interface of the calculator needs just 16 lines of code.

19.4.1 Advanced callbacks
With one exception (the TextCtrl) the calculator GUI consists of only buttons.
When the user clicks on of the number buttons, the according digit should be
inserted or attached to the value in the display field.
By clicking an arithmetic key the operation has to be stored and applied to the
next input value when the user clicks the = .
At least the C/CE . If clicked all inputs should be cleared as usual.

We have learned so far, that we can use a callback function for every individual
widget. This could be a proven method here too, but with 17 callbacks it would
also be a rather unmanageable approach. Especially since some buttons, alt-
hough different, require the same action. (For instance the digit buttons 0...9
simply have to add their number to the displayed value).
A single callback for all buttons would serve us a lot more. Every time the user
clicks a button, a common button callback is invoked and performs an action
depending on the pressed button.

The Lua framework acts exactly like this.
First it looks for an individual callback callback_NAME and performs the code
there. Then it calls a function callback_all_buttons. If such a function
exists, the code is executed too. The function body looks like

1 function c a l l b a c k _ a l l _ b u t t o n s (name)
2 end

235

KAPITEL 19. LUA PROTOCOL DIALOGS

and the parameter contains the name of the clicked button.
With a single function answering to the click of every button the reacting and
computing code remains relative easy. Just open the Tutorial-Calculator
in the editor and take look. The code is well documented.

19.5 Update existing widgets
So far we didn’t mention how to change or update an already existing widget.
We used the widgets function widgets.SetValue(name) to preset a given
widget and we can surely use this function to update a value represented by a
widget. But what, if you - for instance - want to modify the min/max value of a
SpinCtrl?5

A SetValue(name,value) call will only affect the internal SpinCtrl value, but
not the range. To make it a little bit clearer, here again the code how to add a
SpinCtrl to a dialog:

widgets . Sp inC t r l { name=" char " , row=2 , co l =2 , min=0 , max=255 , value=0 }

The control is intended to let the user input a character as a value between 0
and 255. But now consider that you must limit the input for printable characters
only - forced by another widget interaction. In this case you must change the
valid range from 30 (the space) to 127 (the last character in the normal ASCII
table).
It would be rather complicated to provide a special change or update function
for every kind of widget. A far better approach is to replace the control with
simply the same type but with now different specifications. In our case the min
and max parameters.
Since all dialog widgets are organised in a grid, this means nothing else than
to overwrite the existing widget on a certain position with a new one:

1 loca l col , row = widgets . GetPos i t ion (" char ") ;
2 widgets . Sp inC t r l { name=" char " , row=row , co l=col ,
3 min=30 , max=127 , value=0 }

You can - of course - hard code the row and col values, but it makes your script
only error prone. Better to query the position (grid column and row) as shown
in line 1 with the widgets function GetPosition(name). In line 2 we replace
the widget on this position (the former SpinCtrl with the range 0...255) with a
new SpinCtrl and the new range 30...127.
We can extend our little example and restore the actual value of the former
widget if it is still in the new range by doing as following:

1 loca l col , row = widgets . GetPos i t ion (" char ") ;
2 loca l va l = widgets . GetValue (" char ")
3 widgets . Sp inC t r l { name=" char " , row=row , co l=col ,
4 min=30 , max=127 , value=va l }

19.6 Further examples

Modbus dialog

This tutorial showed you only a theoretical example. If you are interested in real
protocol templates and what you can achieve with the dialog framework, take a
look in the Modbus project. Or just select Modbus in the ProtocolView and click

5We used a SpinCtrl in our very first example explaining the dialog grid sizing mechanism,
remember?

236

19.7. SUPPORTED DIALOG ELEMENTS OR WIDGETS

the Setup button.
Then open the template script with the editor. The code is well documented.

19.7 Supported Dialog elements or widgets
All the elements listed here are part of the analyzer software and will not work
in a pure Lua environment.

Every widget supports the parameters listed below. Please note that although
all parameters are optional in a sense of that you can omit them without produ-
cing an error, some are nevertheless mandatory for a correct operating of your
code.

For a better reading we mark every parameter with the following symbols:⊗
A mandatory parameter⊙
An optional parameter

19.7.1 Named parameters
A few additional words regarding the parameter passing. You may have noticed
that all widget element parameters follow the conversation:

PARAMETERNAME=VALUE

This is not Lua typical but we decided that so called named parameters are
more convenient and even more understandable. And: you don’t have to worry
about the parameter order. For instance:

1 widgets . Button (" MyButton " , " Press " , 1 , 3 , true)

Without a look in the manual it’s hard to get the meaning - isn’t it? What is the
widget name, what the button label, does 1 mean the row or the column and
what is true?
On the other hand the same code with named parameters:

1 widgets . Button { name=" MyButton " , l a b e l =" Press " , co l =1 , row=3 , f i l l = true }

The meaning should be obvious.
Please note: Named parameters are always included between an opening and
closing brace {...} because Lua sees the parameter as a table. Normally you
would have to write: ({...}) but the outer brackets are optional here and you
can forego them.

19.7.2 Common widget parameters
Every widget understands at least the following so called named parameters.
Named parameter means: You pass a parameter by assign a parameter value
to the parameter name like this:

name="MyName"
co l =1
f i l l = true

237

KAPITEL 19. LUA PROTOCOL DIALOGS

The parameters are listed mandatory first.

⊗
name : Every widget needs an individual name with which you can later access
the control, e.g. to query the input value or a selection.⊗
col : Specifies the column index where the widget should be placed. The index
starts from 1. Default is the first column.⊗
row : Specifies the row number where the widget should be placed. The index
starts from 1. Default is the first row.⊙
fill : Set this parameter to true if you want to fill the whole available cell space
with the widget element.⊙
span : You can ’span’ a widget over several columns by assign the number of
columns to this parameter.

Beside the parameters above some widgets understand additional parameters,
which we will explain in the according widget section.

19.7.3 Button
A simple button with a text label.

widgets . Button { name=STRING, l a b e l =STRING, co l=NUM, row=NUM,
f i l l =BOOL, span=NUM }

⊗
name : the button name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
label : the button label⊙
fill : fill the cell completely, true or false⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 −− a but ton on top l e f t 2
3 widgets . Button { name=" MyButton " , l a b e l =" Press " , co l =1 , row=1 }
4 end

5 −− t h i s ca l l back i s executed every t ime the but ton i s c l i c k e d
6 function cal lback_MyButton ()
7 −− do something . . .
8 end

238

19.7. SUPPORTED DIALOG ELEMENTS OR WIDGETS

19.7.4 CheckBox
A checkbox is a labeled box which can be either true (checkmark is visible) or
false (checkmark is absence).

widgets . CheckBox { name=STRING, l a b e l =STRING, co l=NUM, row=NUM,
f i l l =BOOL, span=NUM }

⊗
name : the checkbox name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
label : an optional label shown on the right side of the checkbox⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer⊙
value : the initiate (checked) state of the checkbox passed, true or false

Example

1 function d ia log ()
2 −− a but ton we want to s t r e t c h or sh r i nk
3 widgets . Button { name=" MyButton " , l a b e l =" Press " , co l =1 , row=1 }
4 −− a checkbox to togg le a f i l l parameter
5 widgets . CheckBox { name="MyCheckBox " , l a b e l =" S t re tch the but ton " ,
6 co l =1 , row=2 , value= fa lse }
7 end

8 −− t h i s ca l l back i s executed every t ime the checkbox i s c l i c k e d
9 function callback_MyCheckBox (s e l e c t i o n)

10 −− query the p o s i t i o n o f the but ton widget
11 row , co l = widgets . GetPos i t ion (" MyButton ")
12 −− rec rea te the but ton wi th the new f i l l parameter
13 widgets . Button { name=" MyButton " , l a b e l =" Press " ,
14 co l=col , row=row , f i l l =(s e l e c t i o n ==" true ") }
15 end

19.7.5 Choice
A choice widget let you select one of a list of strings. Only the current selection
is displayed. The list of available strings is only shown when the user pull downs
the menu of choices.

widgets . Choices { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,
choices ={STRING1, STRING2 [, . . .] } }

⊗
name : the choice name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊗
choices : a Lua table with at least one string⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer⊙
value : the default selection for the choice passed as string

239

KAPITEL 19. LUA PROTOCOL DIALOGS

Example

1 function d ia log ()
2 −− a but ton we want to s t r e t c h or sh r i nk
3 widgets . Button { name=" MyButton " , l a b e l =" Press " , co l =1 , row=1 }
4 −− a checkbox to togg le a f i l l parameter
5 widgets . Choice { name="MyChoice " , co l =1 , row=2 ,
6 choices ={ " Shr ink but ton " , " S t re tch but ton " } ,
7 value = " S t re tch but ton " }
8 end

9 −− t h i s ca l l back i s executed every t ime a choice i s made
10 function callback_MyChoice (s e l e c t i o n)
11 −− query the p o s i t i o n o f the but ton widget
12 row , co l = widgets . GetPos i t ion (" MyButton ")
13 −− rec rea te the but ton wi th the new f i l l parameter
14 widgets . Button { name=" MyButton " , l a b e l =" Press " ,
15 co l=col , row=row ,
16 f i l l =(s e l e c t i o n ==" S t re tch but ton ") }
17 end

19.7.6 Label
The label widget is used to show any static (not clickable) text. For instance an
explaining label for another widget.
widgets . Label { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,

t e x t =STRING}⊗
name : the choice name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊗
text : a Lua string uses as the label⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 −− a exp la i n i ng t e x t f o r the but ton
3 widgets . Label { name=" MyLabel " , t e x t ="You can c l i c k me" ,
4 co l =1 , row=1 }
5 −− the but ton
6 widgets . Button { name=" MyButton " , l a b e l =" Disable me" ,
7 co l =1 , row=2 }
8 end

9 −− t h i s ca l l back i s executed every t ime the but ton i s c l i c k e d
10 function cal lback_MyButton ()
11 −− d isab le the but ton
12 widgets . Enable (‘ ‘ MyButton " , fa lse)
13 −− and adapt the l a b e l t e x t

240

19.7. SUPPORTED DIALOG ELEMENTS OR WIDGETS

14 local col , row = widgets . GetPos i t ion (‘ ‘ MyLabel ")
15 widgets . Label { name=" MyLabel " , t e x t ="You cannot c l i c k me anymore " ,
16 co l=col , row=row }
17 end

19.7.7 Line
This is just a line which is commonly used to divide several groups of controls.
A line always fills the complete space of a grid cell. With the span parameter
you can stretch the line over a number of columns.
widgets . Line { name=STRING, co l=NUM, row=NUM, span=NUM }⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
span : the number of spanned columns as an integer⊙
name : the line name as a Lua string. Can be omitted if you don’t want to access
the line later.

Example

1 function d ia log ()
2 widgets . Label { name=" MyLabel " , t e x t ="A l a b e l " , co l =1 , row=1 }
3 widgets . Button { name=" Button1 " , l a b e l =" Press me" , co l =2 , row=1 }
4 widgets . Button { name=" Button2 " , l a b e l ="Or me" , co l =3 , row=1 }
5 −− draw a l i n e over a l l columns (span=3)
6 widgets . Line { span=3 , co l =1 , row=2 }
7 end

19.7.8 RadioBox
A radio box is used to select one of a number of mutually exclusive choices.
It is displayed as a vertical column or horizontal row of labeled and clickable
boxes.
widgets . RadioBox { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,

choices ={STRING1, STRING2 [, . . .] } }⊗
name : the radio box name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊗
choices : a Lua table with a string for each choice (at least one)⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer⊙
orientation : The RadioBox orientation can be ’vertical’ (default) or ’horizontal’.⊙
value : the default selection for the RadioBox passed as Lua string

Example

241

KAPITEL 19. LUA PROTOCOL DIALOGS

1 function d ia log ()
2 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 ,
3 choices ={ " v e r t i c a l " , " h o r i z o n t a l " } ,
4 value =" h o r i z o n t a l " }
5 end

6 −− each c l i c k changes the o r i e n t a t i o n o f MyRadioBox
7 function callback_MyRadioBox (s e l e c t i o n)
8 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 ,
9 choices ={ " v e r t i c a l " , " h o r i z o n t a l " } ,

10 o r i e n t a t i o n = se lec t i on ,
11 value= s e l e c t i o n }
12 end

19.7.9 Spacer
A spacer is just an empty widget. It is especially used when you want to remove
a certain widget or - simply spoken - overwrite an existing widget with ’nothing’.

widgets . Spacer { name=STRING, co l=NUM, row=NUM, span=NUM } }

⊗
name : the spacer name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 widgets . Button { name=" MyButton " , co l =1 , row=1 ,
3 l a b e l =" C l i c k me" , f i l l = true }
4 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=2 ,
5 choices ={ "Show but ton " , " Hide but ton " } }
6 end

7 −− Show or hide the but ton according to the RadioBox s e l e c t i o n
8 function callback_MyRadioBox (s e l e c t i o n)
9 i f s e l e c t i o n == "Show but ton " then

10 widgets . Button { name=" MyButton " , co l =1 , row=1 ,
11 l a b e l =" C l i c k me" , f i l l = true }
12 else
13 widgets . Spacer { co l =1 , row=1 }
14 end
15 end

19.7.10 SpinCtrl
A SpinCtrl is a combined number input field with two increment and decrement
buttons. This widget is used to adjust a integer value between a minimum and
maximum value either by input the value directly (it will corrected automatically
if the given limit is exceeded) or by increasing or decreasing it with the buttons.

widgets . Sp inC t r l { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,
min=NUM, max=NUM, value=NUM} }

242

19.7. SUPPORTED DIALOG ELEMENTS OR WIDGETS

⊗
name : the SpinCtrl name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
fill : fill the grid cell completely, true or false⊙
min : the minimum value, default is 1⊙
max : the maximum value, default is 100⊙
value : the initial value, default is the minimum value⊙
span : the number of spanned columns as an integer

Example

1 function d ia log ()
2 widgets . Label { name=" MyLabel " , t e x t =" Va l i d numbers are 1 . . . 1 0 0 " ,
3 co l =1 , row=1 }
4 widgets . Sp inC t r l { name=" MySpinCtr l " , min=1 , max=100 ,
5 co l =1 , row=2 , value=10 }
6 end

7 −− always c a l l e d when the value i n the Sp inC t r l was changed
8 function ca l lback_MySpinCt r l (value)
9 local num = tonumber (value)

10 i f num >= 100 then
11 widgets . Label { name=" MyLabel " , t e x t ="Maximum number reached " ,
12 co l =1 , row=1 }
13 e l s e i f num <= 1 then
14 widgets . Label { name=" MyLabel " , t e x t ="Minimum number reached " ,
15 co l =1 , row=1 }
16 else
17 widgets . Label { name=" MyLabel " , t e x t =" Va l i d numbers are

1 . . . 1 0 0 " ,
18 co l =1 , row=1 }
19 end
20 end

19.7.11 Table
The Table widget is as its name revealed, an text input control organized as
a table. This means: You can create a table with two columns and four rows.
Every table cell serves as an text input for various strings or numbers. You can
even preset every table cell or pass a Lua array (table) to it.
A table is particular interesting for field bus systems where the participants
structure their values in register tables like Modbus.
widgets . Table { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,

co ls=NUM, rows=NUM, preset=STRING,
choices ={STRING1, STRING2 [, . . .] } }⊗

name : the Table name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer

243

KAPITEL 19. LUA PROTOCOL DIALOGS

⊙
cols : the number of columns, default is 1 is 1⊙
rows : the number of rows, default is 1⊙
preset : the initial value for every table cell, default is an empty string.⊙
content : a Lua array or table which contains a certain number of strings or
numbers. The assignment starts with the first item in the passed content and
stops either when reaching the last Table cell or last content value.

Example

1 function d ia log ()
2 −− the number o f columns
3 local t c o l s = 3
4 −− the number o f rows
5 local t rows = 20
6 −− an empty tab l e ho ld ing the d e f a u l t values
7 local t va lues = { }
8
9 −− f i l l the tab l e w i th increment ing numbers s t a r t i n g w i th 1

10 for i =1 , t c o l s * t rows do
11 tva lues [i] = i
12 end

13 −− spec ia l mark o f the f i r s t and l a s t t ab l e en t ry
14 tva lues [1] = " FIRST "
15 tva lues [# tva lues] = "LAST"
16 −− create a tab l e widget and pass the tva lues tab le as i n i t i a l

values
17 −− to i n i t i a t e a l l t ab l e c e l l s
18 widgets . Table { name=" tab le " , co l =1 , row=1 , co ls= t co l s , rows=trows ,
19 preset ="FFFF" , content= tva lues }
20 end

19.7.12 TextCtrl
A TextCtrl comes in handy every time you need an input field for numbers or
text strings. The TextCtrl furthermore filters the key strokes according to its
input type. You can create a TextCtrl for plain decimal, numbers with a decimal
point, hexadecimal or binary values and - of course - for normal strings.
widgets . T e x t C t r l { name=STRING, co l=NUM, row=NUM, f i l l =BOOL, span=NUM,

datatype=TYPE, data len=NUM, value=STRING }⊗
name : the Table name as a Lua string.⊗
col : the column index as an integer⊗
row : the row index as an integer⊙
fill : fill the grid cell completely, true or false⊙
span : the number of spanned columns as an integer⊙
datatype : specifies the kind of input data. TextCtrl offers you the number types
BIN_NUMBER (binary), DEC_NUMBER (decimal), FLOAT_NUMBER (floating
point numbers to input numbers with a decimal point) and HEX_NUMBER (he-
xadecimal). Additional ASCII_STRING (normal text) and HEX_STRING (which
is a sequence of hex characters). Depending on the passed datatype the input
filter is set. Default is ASCII_STRING.

244

19.8. FUNCTIONS DEALING WITH WIDGET ELEMENTS

⊙
datalen : Specifies the valid length of the input data. For instance: How many
characters of an input should be used during the value request.⊙
value : the initial value, default is an empty string

Example

1 function d ia log ()
2 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 , l a b e l ="Mode" ,
3 o r i e n t a t i o n =" h o r i z o n t a l " ,
4 choices ={ " ASCII " , "HEX" , "DEC" , " BIN " } }
5 widgets . T e x t C t r l { name=" MyTextInput " , co l =1 , row=2 ,
6 datatype=ASCII_STRING , f i l l = true }
7 end
8
9 function callback_MyRadioBox (mode)

10 local f i l t e r = ASCII_STRING
11 i f mode== "DEC" then f i l t e r = DEC_NUMBER
12 e l s e i f mode== "HEX" then f i l t e r = HEX_NUMBER
13 e l s e i f mode== " BIN " then f i l t e r = BIN_NUMBER
14 end
15 widgets . T e x t C t r l { name=" MyTextInput " , co l =1 , row=2 ,
16 datatype= f i l t e r , f i l l = true }
17 end

19.8 Functions dealing with widget elements
You have already seen some of this functions in the examples when we were
querying an input from a widget or modifying it’s value.
The following functions are provided by the widgets module. All these functions
expect an unique widget name.
Please note! Since the functions need not more than two parameters, the argu-
ments are passed directly and not as a NAME=VALUE pair. The only exception
is the SetDialogSize function.
A function with named parameters (NAME=VALUE pairs) expects the argu-
ments between two {}. Here the arguments are enclosed between two normal
round brackets ().

19.8.1 Clear
A call of widgets.Clear() removes (deletes) all existing widgets in the dia-
log. This function becomes extremly useful if you want to realize a dialog with
different ’pages’. Since the current dialog implementation doesn’t provide ’nes-
ted’ dialog elements (assigned to different dialog pages), you must remove all
the widgets of a not visible dialog pages before adding the new ones - which
could be very cumbersome. The Clear() function provides you with a new
’clear’ dialog where you can add the necessary elements of a given dialog pa-
ge. When switching to another page, just do the same. First clear the dialog,
then add the elements for the now visible page.
The Modbus template is a good example. It is divided into a dialog page for the
general Modbus protocol setup and a second page providing typical Modbus
telegram filter elements.

245

KAPITEL 19. LUA PROTOCOL DIALOGS

The following (smaller) code example will give you a first impression how it
works.

1 i f not widgets .DIALOG_PAGE then
2 widgets .DIALOG_PAGE = " F i l t e r "
3 end
4
5 function d ia log ()
6 cal lback_page (widgets .DIALOG_PAGE)
7 end
8
9 function d i a l o g _ f i l t e r ()

10 widgets . Clear ()
11 widgets . RadioBox { name="page " , choices = { " Setup " , " F i l t e r " } ,
12 row=1 , co l =1 , f i l l =true , span=2 ,
13 o r i e n t a t i o n =" h o r i z o n t a l " , value =" F i l t e r " }
14 widgets . Label { t e x t =" This i s the FILTER page " , row=2 , co l =1 ,
15 span=2 , f i l l = true }
16 widgets . Label { t e x t =" Device Address " , row=3 , co l =1 , f i l l = true }
17 widgets . Sp inC t r l { name=" wxF i l te rAddr " , row=3 , co l =2 , f i l l =true ,
18 min=1 ,max=16 }
19 end
20
21 function d ia log_setup ()
22 widgets . Clear ()
23 widgets . RadioBox { name="page " , choices = { " Setup " , " F i l t e r " } ,
24 row=1 , co l =1 , f i l l =true ,
25 o r i e n t a t i o n =" h o r i z o n t a l " , value =" Setup " }
26 widgets . Label { t e x t =" This i s the SETUP page " , row=2 , co l =1 ,
27 f i l l = true }
28 widgets . CheckBox { name=" t e s t " , l a b e l =" Test mode" ,
29 row=3 , co l =1 , f i l l = true }
30 end
31
32 function cal lback_page (page)
33 i f page == " Setup " then
34 d ia log_setup ()
35 else
36 d i a l o g _ f i l t e r ()
37 end
38 −− s to re se lec ted d ia log page
39 widgets .DIALOG_PAGE = page
40 widgets . SaveSett ings ()
41 end
42
43 function apply ()
44 local page = widgets . GetValue (" page ")
45 i f page == " Setup " then
46 −− do apply on ly setup s e t t i n g s
47 else
48 −− do apply on ly f i l t e r s e t t i n g s
49 end
50 end

Line 1..3 defines a non volatile variable to store and restore the last selected
dialog page, see 19.8.8. The dialog itself consists of two different pages. Each
one is coded in its own function dialog_filter() and dialog_setup().
The selection is done by a RadioBox provided in every page (line 11 and 23).
The original dialog calls the right code depending on widgets.DIALOG_PAGE
in line 6. The same happens when the user clicks the RadioBox via the callback
callback_page.

246

19.8. FUNCTIONS DEALING WITH WIDGET ELEMENTS

Every dialog page starts with a call widgets.Clear(). Remember, that you
cannot delete or remove a certain element. You can replace an element with
a Spacer widget, but this is only a poor solution (if at all). Especially when the
dialog pages have different rows and/or columns. Without clearing the page,
every call of dialog_filter or dialog_setup will just overwrite widgets at
the given column and row index. If the former dialog has more columns or rows
the remaining elements remain in place.
Since Clear() removes all elements you have to add the page selector (here
the RadioBox) in every page separately. You can - of course - use other ele-
ments for the page selection. For instance a Choice or a row of buttons. It is up
to you to decide.

One word to the apply mechanism. Since Clear() removes all elements of
the ’other’ dialog page, this also means, that you only can apply values of the
current - existing - dialog widgets. Or to put it in other words:
widgets.GetValue(...) returns nil if you access an not existing widget
element. A good approach is to ask for the current page (see line 44 and 45)
before query and apply the user input.

19.8.2 Enable
This function enables a widget for user interaction (which is the default state of
a widget element) or disables it. A disabled widget appears greyed out and is
not accessible by the user.

widgets . Enable (NAME, STATUS)

⊗
NAME : The name of the widget as a Lua string.⊗
STATUS : The new enable state of the widget, true or false

Example

1 function d ia log ()
2 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 , l a b e l ="Mode" ,
3 o r i e n t a t i o n =" h o r i z o n t a l " ,
4 choices ={ "ENABLED" , "DISABLED" } }
5 widgets . T e x t C t r l { name=" MyTextInput " , co l =1 , row=2 ,
6 datatype=ASCII_STRING , f i l l = true }
7 end
8
9 function callback_MyRadioBox (mode)

10 local enable = true
11 i f mode== "DISABLED" then enable = fa lse
12 else enable = true
13 end
14 widgets . Enable (" MyTextInput " , enable)
15 end

19.8.3 GetPosition
Asks a widget with the given name for its position in the grid. This function is
especially useful if you favorite a dynamic column and row assignment.

247

KAPITEL 19. LUA PROTOCOL DIALOGS

POSITION = widgets . GetPos i t ion (NAME)

⊗
NAME : The name of the widget as a Lua string.

= POSITION : The position as a value pair column, row.

Example

1 function d ia log ()
2 for row=1 ,4 do
3 for co l =1 ,4 do
4 local name = "B " . . co l . . " x " . . row
5 i f co l == 3 and row == 2 then name="PRESS" end
6 widgets . Button { name=name, l a b e l =name, co l=col , row=row }
7 end
8 end
9 end

10 function callback_PRESS (c o n t r o l)
11 local col , row = widgets . GetPos i t ion ("PRESS")
12 widgets . Label { name="PRESS" , t e x t ="Ready " , co l=col , row=row }
13 end

Note the returning of two variables. This is a special feature of Lua.

19.8.4 GetValue
Queries the value of the given widget. The type of the result depends on the
asked widget. It can be a number (SpinCtrl), a boolean (CheckBox), a string
(TextCtrl, Choice, RadioBox) or an array of strings (Table).

VALUE = widgets . GetValue (NAME)

⊗
STRING : The name of the widget.

= VALUE : The value of the widget. The result type depends on the widget.

Example

1 function d ia log ()
2 widgets . Label { name=" MyLabel " , t e x t =" Inpu t a hex number " , co l =1 ,

row=1 }
3 widgets . T e x t C t r l { name=" MyInput " , co l =2 , row=1 , datatype=HEX_NUMBER

}
4 end

5 function apply ()
6 −− pass the i npu t to the send mechanism
7 return widgets . GetValue (" MyInput ")
8 end

248

19.8. FUNCTIONS DEALING WITH WIDGET ELEMENTS

19.8.5 IsEnabled
Checks if the given widget is enabled for user inputs or disabled.

RESULT = widgets . IsEnabled (NAME)

⊗
NAME : The name of the widget.

= RESULT : Returns true when the widget is enabled, false otherwise.

Example

1 function d ia log ()
2 widgets . Button { name=" MyButton " , l a b e l =" Toogle i nou t f i e l d " , co l =1 ,

row=1 }
3 widgets . T e x t C t r l { name=" MyInput " , co l =1 , row=2 , f i l l = true }
4 end

5 function cal lback_MyButton ()
6 widgets . Enable (" MyInput " , widgets . IsEnabled (" MyInput ") == fa lse

)
7 end

19.8.6 SetValue
Sets the internal value of the given widget.

widgets . SetValue (NAME, VALUE)

⊗
NAME : The name of the widget.⊗
VALUE : The new value displayed by the given widget.

Example

1 function d ia log ()
2 widgets . Button { name=" MyButton " , l a b e l =" De fau l t value " , co l =1 , row

=1 }
3 widgets . Sp inC t r l { name=" MySpinCtr l " , co l =1 , row=2 , f i l l = true }
4 end

5 function cal lback_MyButton ()
6 widgets . SetValue (" MySpinCtr l " , 50)
7 end

19.8.7 SetDialogSize
In some circumstances it may be necessary to set the dimension of the dia-
log explicitly. This function let you specify the width and height of the dialog
independent of internal grid mechanism.

widgets . SetDia logSize { width =400 , he igh t =500 }

⊗
width : The new width of the dialog in pixel.

249

KAPITEL 19. LUA PROTOCOL DIALOGS

⊗
height : The new height of the dialog in pixel.

Example

1 function d ia log ()
2 widgets . SetDia logSize { width ="600" , he igh t ="400" }
3 widgets . RadioBox { name="MyRadioBox " , co l =1 , row=1 , l a b e l ="Mode" ,
4 o r i e n t a t i o n =" h o r i z o n t a l " ,
5 choices ={ "ENABLED" , "DISABLED" } }
6 widgets . T e x t C t r l { name=" MyTextInput " , co l =1 , row=2 ,
7 datatype=ASCII_STRING , f i l l = true }
8 end

19.8.8 SetTitle
If you like to give the dialog an individual title in the window frame, this function
comes into play.

widgets . S e t T i t l e (t i t l e)

⊗
title : The title of your dialog as a string.

Example

1 function d ia log ()
2 widgets . S e t T i t l e (" T u t o r i a l P ro toco l Se t t i ngs ")
3 widgets . RadioBox { name=" u n i t " ,
4 l a b e l =" Un i t " ,
5 co l =1 , row=2 , f i l l =true , span=2 ,
6 choices = { " Met r i c " , " Anglo−American " } }
7 widgets . Label { t e x t =" Telegram EOS" ,
8 co l =1 , row=3 }
9 widgets . Choice { name="eos " ,

10 co l =2 , row=3 , f i l l =true ,
11 choices = { " LF " , "CR" , "LFCR" , "CRLF" } }
12 end

LoadSettings
The counterpart of SaveSettings(). This function restores the previously
saved dialog variables (settings) of the widgets module (name space).

RESULT = widgets . LoadSett ings ()

= RESULT : Returns true when the settings were loaded without failure, false
otherwise.

Example

250

19.8. FUNCTIONS DEALING WITH WIDGET ELEMENTS

1 i f not widgets . LoadSett ings () then
2 debug . p r i n t ("OOPS")
3 end
4 . . .
5 function s p l i t (. . .)
6 end

SaveSettings
Saves all variables of the widgets name space in a file. The file name is
derived from the current record name. The file extension is msbini and created
in the templates folder. The variables are stored as key value pairs like:

eos="%013%010"
u n i t =" Met r i c "
t imeout =0.01

Control characters or characters outside the normal ASCII range are ’escaped’
by the % character followed by its 3-digit ASCII value. In the example above
%013 means the CR, %010 means the LF. The % itself is stored as %037.

RESULT = widgets . LoadSett ings ()

= RESULT : Returns true when the settings were saved without failure, false
otherwise.

Example

1 function apply ()
2 local t = {
3 [" LF "] = " \ n " ,
4 ["CR"] = " \ r " ,
5 [" LFCR "] = " \ n \ r " ,
6 [" CRLF "] = " \ r \ n "
7 }
8 widgets . u n i t = widgets . GetValue (" u n i t ")
9 widgets . eos = t [widgets . GetValue (" eos ")]

10 i f not widgets . SaveSett ings () then
11 debug . p r i n t ("OOPS")
12 end
13 return "RELOAD"
14 end

251

KAPITEL 19. LUA PROTOCOL DIALOGS

252

20
Lua modules

Lua modules are like libraries in other languages. You already
know some modules like math, string or widgets. The first two
are fixed part of the original Lua interpreter. The latter was added
as a fixed built-in by the MSB-RS232 software. Here you learn how
you can write your own modules which you afterwards can reuse
and share between your scripts.

As a rule a module is a collection of functions which are serving a common
purpose. For example the widgets module contains all necessary functions
for building a graphical user interface.
In Lua these functions are stored in a table. Calling a module function is nothing
else like accessing a table element/variable. The table name provides the mo-
dule name, making the functions in it distinguishable from functions coinciden-
tally with the same name1.
Let’s take a look to the following code snippet:

1 function Sleep (t)
2 −− w i l l not executed !
3 end
4 t ime . Sleep (0.5)

When executing this line Lua looks for a function Sleep in the already loaded
table time. It does not call the global Sleep function in line 1.

But hold on a minute! What means ’already loaded table’ in this context?
In case of built-in modules like string or widgets the according module
tables are already loaded by the interpreter so to offer their functions without
any additional code. Individual modules (written by yourself) cannot pre-loaded
since the interpreter does know nothing about them. It is your duty to do that.
The Lua command or function to load a module is:

r equ i re "modname"

In simple terms require looks in specified paths2 for a Lua file with the given
name and executes the code. The result is cached so if you require the same
module again you get the cached result/instance from the first time.
A module code can - of course - solely exists of a single instruction like:

1In this case it works like a name space in other programming languages, e.g. C++
2Where Lua looks for modules is part of a later section

253

KAPITEL 20. LUA MODULES

−− minimal . lua
debug . p r i n t (" I ’m a module ")

In this case you get the debug message once you require the given module.
But only once, even if you repeat the require statement. Since the module is
already loaded Lua does not reload and therefore does not execute it again!
r equ i re " minimal " −−> outputs " I ’m a module "
r equ i re " minimal " −−> noth ing !

Such modules with directly executable code are suitable to do some initialisati-
on or to provide your code with special program constants like field-bus protocol
specifiers, name aliases and so on. But they represent not really a module with
the meaning of a collection of functions as mentioned before.

20.1 Writing a module
In a module a collection of functions is organized in a table. Imagine a small
module providing just the two functions min and max. Both functions are called
with two number parameters and return either the minimum or maximum value.
We will put these functions in a module called algorithm. Here at first the
module code:

1 −− a lgo r i t hm . lua
2 return {
3 min = function (a , b) i f a > b then return b else return a end end ,
4 max = function (a , b) i f a < b then return b else return a end end
5 }

Remember, Lua does not differ between numbers, strings or functions. These
are all first-class values3 and you can store a function as a table item as easily
as any other type. Here we simply assign the table values or entries min and
max with the according functions.
Loading the module with require returns a table which Lua stores in its own
module table. But to access the table (or module) functions you need a refe-
rence for it. As said before require returns the result of the loaded module
code, here the module table which you just can bind to any variable.
loca l a lgo r i t hm = requ i re " a lgo r i t hm "

Afterwards you can access every function in the module as easily as any other
table value. To get the min or max value of two number pairs is then performed
with:
loca l a lgo r i t hm = requ i re " a lgo r i t hm "
debug . p r i n t (a lgo r i t hm . min (1 ,2)) −−> outputs 1
debug . p r i n t (a lgo r i t hm .max(1 ,2)) −−> outputs 2

Note! We named the module reference as like the module name. This is com-
mon practice but you can decide for yourself.

Coding a module like above (directly inserted in the table) may work for very
short function codes but it is surely not a good advice for more complicated
functions. A better approach is to define an empty table and assign the function
later. Here we go:

3First-class value in Lua means a function is a value with the same rights as strings or numbers
and therefore can be stored in variables and tables equally.

254

20.1. WRITING A MODULE

1 loca l m = { }
2
3 function m. min (a , b)
4 i f a > b then return b else return a end
5 end
6
7 function m.max(a , b)
8 i f a > b then return a else return b end
9 end

10
11 return m

Line 1 creates an empty (module) table. We can put every function (and also
every variable we like) into the table just by add the table name in front of the
function name separated by a dot.
Alternatively you can write:

1 loca l m = { }
2
3 m. min = function (a , b)
4 i f a > b then return b else return a end
5 end
6
7 m.max = function (a , b)
8 i f a > b then return a else return b end
9 end

10
11 return m

But the first approach looks more elegant.

Functions or variables which are not part of the module table are not accessible
from the outside and behaves like private members in a C++ class. To make
that clear let us extend the algorithm module with a function to calculate the
factorial of a given number.

1 function m. f a c t (n)
2 i f n < 0 then return n i l
3 e l s e i f n == 1 then return 1
4 else return n * m. f a c t (n − 1)
5 end
6 end

This is a recursive function and calls itself n times (see line 4). And how it is
with recursive functions you always risk a stack overflow. Here it won’t happen.
Lua reaches the most possible floating point number before the stack overruns
with n=170 and returns infinity (inf).
But let us assume our stack size is limited. In this case we must prevent fact
to exceed a given number of recursive calls. We do so by specifying an internal
(private) module variable MAX_STACK=100.

1 loca l MAX_STACK = 100
2
3 function m. f a c t (n)
4 i f n < 0 or n >= MAX_STACK then return n i l
5 e l s e i f n == 1 then return 1
6 else return n * m. f a c t (n − 1)
7 end
8 end

Finally we add a function to control this limit from the outside of the module.

255

KAPITEL 20. LUA MODULES

1 function m. s e t _ s t a c k _ l i m i t (n)
2 i f n > 2 and n <= 100 then
3 MAX_STACK = n
4 end
5 end
6
7 function m. f a c t (n)
8 i f n < 0 or n >= MAX_STACK then return n i l
9 e l s e i f n == 1 then return 1

10 else return n * m. f a c t (n − 1)
11 end
12 end

The function set_stack_limit is the only way to control the stack limit out-
side the module. And since it also does a range check, we are sure that the
limit is always in a valid range.
Here we hide a normal variable. But it is always a good idea to do the same
with functions which are only called within the module. You will find the com-
plete algorithm module in the modules folder.

20.2 Module path
This is the path where MSB-RS232 looks for modules loaded with require.
Under Linux it is:

~/.IFTOOLS/SerialAnalyzer/7.0.2/Templates/modules

Under Windows the module path is:

C:\Users\USERNAME\AppData\Roaming\IFTOOLS\SerialAnalyzer\7.0.2\Templates\modules

You can check it by yourself. Just use an invalid module name in the require
command like:

a lgo r i t hm = requ i re " a lgoor i thm "

and Lua shows you an according error in the editor error window:

[string "--[[..."]:8: module ’algoorithm’ not found:
no field package.preload[’algoorithm’]
no file ’~/.IFTOOLS/SerialAnalyzer/6.0.2/Templates/Modules/algoorithm.lua’

The last line indicates the place where Lua looks for a module.
You can also organize your modules in different folders of the module path. For
instance: You have a module collection serving only for a specific project or
you consider to make a new version and want to have both for a certain time.
In all these cases just add the sub folders to the require argument. Here an
example:

You have two versions of the algorithm module, version 1.0 and 1.1. In the
module folder they are stored as modules/1.0/algorithm.lua and
modules/1.1/algorithm.lua. The load command then looks like:

a lgo r i t hm = requ i re " 1 . 0 / a lgo r i t hm "

You can even use a variable to switch between the two versions with:

256

20.2. MODULE PATH

loca l modpath = " 1 . 0 / a lgo r i t hm "
a lgo r i t hm = requ i re (modpath)

Please note!
To pass the module path as a variable you have to put it in brackets to make
clear, that it is an argument. And: Lua converts the module path internally to
its OS. It doesn’t matter if you run Windows or Linux, always prefer a ’/’ in the
path. This is not only platform independent it also looks better than:

−− i n a s t r i n g a backslash must be inpu t as double backslashes
loca l modpath = " 1 . 0 \ \ a lgo r i t hm "
a lgo r i t hm = requ i re (modpath)

257

KAPITEL 20. LUA MODULES

258

21
The Switch Editor

The switch option extents the capabilities of the analyzer by the
feature to interactively change single lines. It can be done with or
without running recording. You can switch between different
levels, including switching the lines off. You can also feed data
into the receive and send linesand you can reroute lines.

Imagine the switch option as a kind of patch panel between the inputs and
outputs of port A and B. On this you can place switches, inverters and further
elements and wire them to the connectors of both ports. But with the difference,
that you do not use real wires and switches. You only place and connect them
virtually on a drawing area.

21.1 User Interface
The schematic editor is divided into three areas to allow easy working. The half
toned part is your drawing area where you place and connect the switching
elements and Inputs and Outputs. on the left side you will find select list of the
switching elements. To add an element you simply have to click on it.
The creation of a circuit diagram is divided into:

1 Select and place elements and inputs/outputs
2 Wire (connect) the elements
3 Execute the circuit

In this relation we talk about different input modes. While creating a circuit dia-
gram you will frequently change between those modes. You can perform inter-
mediate tests or final outputs. The single modes are described on the following
pages. But at first an overview about the possibilities the switching option offers.

Please note!

The displayed signal pin numbers in the following pictures reflect the
current signal name settings in the control program. For instance: Using
DCE sets TxD as pin 2, whereas DTE defines TxD as pin 3. The same
applies to the other RS232 signals.

259

KAPITEL 21. THE SWITCH EDITOR

21.2 Switching signals and more
The simplest possibility to engage in a connection is to break it. As all lines are
equal it is the same if you break the RXD, TXD data line or a control line like
RTS. A simple switch and you can stop the data flow without having to cut a
cable.
Beside this every output signal can be connected to a signal source. Sources
are either the input signals of both ports or a positive or negative level. In this
way lines can be purposefully switched between logical zero and one. Useful
to check the implementation of data protocols.
The input and output signals of port A and B can be rerouted. That means that
every input signal can be connected to every output signal. Since their function
is given by the hardware, no input can be changed to an output and vice versa.
So a NULL modem connection can not be implemented.

Beispiel
Loopback-Port-A.msbdrw

For a loop back circuit simply connect RXD and TXD of the same port. The
same can be done with the control lines to implement a looping back of the
protocol signals. A loop back circuit can be found at the circuit directory.
With the switch option you can determine which two lines can be used as send
and receive lines and therewith used for data logging. The default is RXD and
TXD (Pins 2 resp. 3) but just as well you could use the RI or DTR line.
In connection with the possibility to route lines and reroute them you are able to
twist connections of non standard cables and log data from uncommon inputs.
Some applications need manual sourcing of data into an existing connection.
The reason can be to provoke a certain reaction or to simulate transmission
errors. The switching option offers two seperate send channels to allow input
of any data. In the figure above you see the send channels connected via switch

260

21.3. INPUT MODI

to the TXD and RXD lines.
Data sequences may contain any non displayable hexa decimal values, using
the $ as a quoting sign. ($0A for line feed). They can also be sent together with
a framing or parity error (error simulation).
Inverter elements allow the purposeful negation of each signal line. This can
be used for both, data and signal lines.

21.3 Input modi
Three input modes
for edit, connect and

execute

The schematic editor distinguishs between three input modes, directly selecta-
ble by clicking onto the respective symbol in the tool bar or directly per short
key. Depending on the choosen mode the shape of the cursor changes.

Key Mode Description
F2 Edit mode insert, place and remove decals and connec-

tions
F3 Connection mode Insert connections
F4 Execution mode Apply the circuit to the analyzer

21.4 Edit mode
The edit mode is used to place new elements or to remove unused ones. You
can move elements or mirror them. A text element can be used to enter any
comment in different styles and colours.

21.4.1 Insert a new decal
To add a new element into the circuit click onto the wanted symbol in the left
selection list. The element will be placed in the upper left corner of the sche-
matic and can be moved by click and move while keeping the left mouse key
pressed. In parts the resources for these elements are limited, not any number
of these elements are available. For understandingly reasons this is valid for
the in/out signals and for other special elements concerning the data input and
output. (See limited resources).
Already used, in the schematic placed, input or output pins are no longer listed
in the selection lists or deactivated when the maximum number of elements are
reached. In this case their symbol is grey.

21.4.2 Available switching elements

Symbol Description
RS232 inputs
Input from port A (Yellow) and port B (blue). The text in the symbol
matches the respective signal name and is automatically updated
as soon as it is redefined in the control program.
RS232 outputs
Output to port A (Yellow) and port B (blue). The signal name is
also automatically adapted.

261

KAPITEL 21. THE SWITCH EDITOR

Static signal levels
The three possible signal levels of a RS232 connection. Use one
of these elements to switch an output to a defined level. The Off
symbol is used to mark explicitly unused or unconnected outputs.
Unused outputs are internally always switched to off.
Inverter
Inverters are used to negate any signals, static levels or data
lines. They are useful tools for data with twisted levels.
Interactive switch
A changeover switch with two inputs and one output. Each mouse
click changes the input.
Interactive switch
A push-button which changes the input and holds this state as
long as the left mouse key is pressed. By clicking the element
and releasing the mouse key outside the switching element the
key does not jump back into its former position. This is useful to
change its default state.
Data input
This element is used for sending any data to the connected lines.
According to the RS232 standard two lines exist, RXD and TXD.
You can also use other lines or multiple lines at the same time.
Data logging
With this element you define the line and position of the tap where
the data logging shall take place. Two elements are available for
logging of channels A and B. For simply connected lines the po-
sition is negligible. At switched lines the tap can be placed before
or behind a switch.

21.4.3 Select decals and connections

Some operations like moving, flipping horizontal or deleting are always rela-
ted to the selected elements. You can simply select an decal, connection or
connection node just by left click on it. Selected items are marked by a sur-
rounding dotted frame.
To select multiple elements open an area with the mouse and pressed left key.
All elements inside the rectangular area are selected together and seen as a
group. All group elements can be moved or deleted together.
By a second left click with hold the Shift key you can remove the selection of
a single element, (with other words deselect it). If you want to deselect all ele-
ments simply left click onto a free area of the schematic (outside the selection)
or press Ctrl+Shift+A.
Single or selected elements can be moved by clicking the single element or
one of the selected group members and moving the mouse with hold left mou-
se key. Connections are seen as rubber wires.
With Shift+A you can simply select all elements, for instance to move the com-
plete circuit around the drawing area.

262

21.4. EDIT MODE

Edit connection nodes

Please note, that corners or knots of a connection wire are elements as
well which can be moved, selected and deleted.

21.4.4 Deleting of decals and connections
In general only selected elements can be deleted. At first you have to select
the part or parts of the schematic which you want to remove. Then tap the Del
key to remove them immediately.
The editor has an unlimited Undo/Redo capacity. If you deleted more than you
intented you can restore the last state by clicking onto the Undo Symbol. How to
navigate through the last changes in your schematic is described in the section
Undo/Redo Mechanism.

21.4.5 Flip decals horizontally

Flip horizontal
selected decals with key

’H’

When you draw a schematic the inserted switching elements are not always
aligned to the requested direction. To mirror one or more elements horizon-
tally, mark these elements and press the key H or click in the view menu Flip
Horizontal.

21.4.6 Text input
Text is treated as a normal element. It can be moved, deleted or modified in
content, size and colour.
To add new text simply click on the text symbol in the selection list on the left
side. In the opening window you can enter the wanted text with its size, and
background/foreground colour. The width of the text is automatically alined ac-
cording to the longest text line. In most cases you will use the text inputs for
documentation of your schematic or for description of certain circuits or connec-
tions. The placement in fixed grid steps may be bothering. By pushing the Shift
key while moving the text it can be placed pixelwise. This is also valid for all
other elements, but makes no sense there. Every text can be modified later.

Text input dialog
for labels and text fields

Simply click on the text with the right mouse key to open the input dialog.

Moving elements pixelwise

With hold shift key you can move text and other elements pixelwise.

21.4.7 Limited resources
In the selection list for new input or output elements only the available elements
are shown. Already used elements are remoevd from the list or newly added to
the list when the element is deleted from the schematic. A double usage is not
possible.
The same applies for all limited resources. As soon as the elements are used
up they can no longer be choosen from the list.
The limited resources are:

1 Inputs. All together 8 input pins exist, located at port A/B.
2 Outputs. Together 8 output pins.

263

KAPITEL 21. THE SWITCH EDITOR

3 Data input. Two send channels for TxD, RxD (according to the RS232 stan-
dard).

4 Data logging. Two receive channels for TXD, RXD

21.4.8 Undo/Redo mechanism
Imagine the undo/redo Mechanism as a list of states of your schematic. Each
adding/deleting of elements ads a new entry in this list.
With undo you jump one entry back, with redo one entry forth. So you can
restore any former state of your circuit.

21.5 Connection mode
After having placed some elements you have to connect them. The connection
mode is activated by clicking onto the line symbol in the tool bar or by pressing
F3. The cursor shape changes to a cross and signals the readiness for wiring.

21.5.1 Connection rules
RS232 Input

with OUT Connector

RS232 Output
with IN Connector

Connections can only exist between IN connectors and OUT connectors,
short IN and OUT.
These identifiers are intentionally choosen to differ the connecting pins of the
elements from the RS232 input and output pins at the D-Sub connectors.
Each RS232 signal input (e.g. Port A lines RXD,DSR,CTS) has an OUT Connec-
tor with internal RS232 buffer where the connected RS232 input signal is fed
through and appears at the connector as an output signal.
The same applies for every RS232 signal output. It is connected via IN connec-
tor to a signal source.
In the following chapters we use IN and OUT, when we talk about the connec-
tors of elements and we will use input and output when it is the physical RS232
signal at the connector port A and B.
Connections can be wired between IN and OUT connectors of the single ele-
ments where it is the same if it starts at an IN or OUT connector. However you
can connect one OUT connector to some IN connectors, see branches.

Decal IO-Pins and RS232 Inputs/Outputs

Each switching element has IN and OUT connectors. The RS232 Pins
at port A and B are named inputs and outputs.

21.5.2 Adding a connection

Easy connecting
by showing all possible

ports

The start of a wire can be a element connector or a connection knot. As soon as
you click a connector with the left mouse key the cursor trails a rubber band, re-
presenting the current connecting segment. A active connection (rubber band)
is completed by clicking the appropriate end point. The editor marks all possi-
ble connections with a symbol.
The connection starts with a signal source (which is an OUT connector, so only
IN connectors are marked as available. The output of the switch is of the same
kind as the start point OUT and therefor not shown.
Probably you do not want to draw no diagonal wires on your schematic. The-
refore you can add corners by left click or tapping the space key. The corner is
264

21.5. CONNECTION MODE

placed in raster. The last corner at a time can be removed by pressing Esc.
As soon as you connect the loose end to a valid end point the connection is
completed and will be regarded for the execution of the schematic. Please re-
gard the hints in the status line.
Unconnected Outputs, including those you did not place in your schematic, are
automatically switched to off. An empty sheet means, that there is no connec-
tion between the inputs and outputs of port A and B. This refers to the expec-
tation that no drawn connection is no real connection.
To differ the state of an intentionally unconnected IN connector from a forgotten
one you can connect the pin with the Off element from the element list.

21.5.3 Branches
The editor allows to connect multiple IN connectors (signal loads) with a com-
mon OUT connector (signal source). Sources are besides the 8 RS232 Inputs
at Port A and B also each +5V resp. -5V element.
The connections can be wired directly or through switches or inverters. For ex-
ample you can connect the CTS signal from port A directly to the CTS signal of
port B and inverted to DSR of port B. The starting position is displayed in the
figure aside.
Click on the connector of the yellow CTS signal input to start a wire. As all pins

Connection branches
...the starting position...

allows only one connection at a time you have to insert a corner by hitting the
space key or the left mouse key. Complete the connection by clicking onto the
inverter input.
You can imagine a corner as an element with one IN and three OUT connecti-

Nodes are used as start
for a new connection...

ons which are placed one upon the other. The IN connector of the corner is fed
by the OUT connector of the CTS signal input (yellow) and one OUT connector
of the corner is wired to the IN Connector of the inverter. Therewith the corner
still has two open OUT connectors, according to the two free directions down
and to the right.
Now click onto the connector of the blue CTS Output (signal load) to start

...and the complete signal
branch

a new wire. The editor shows all possible signal sources, also the previously
added corner. With a click on this corner point you now have also connected
the CTS signal of port B to the CTS signal of port A. Finish with adding the
connection between DSR and the OUT port of the inverter.

21.5.4 Move a connection
A connection consists of one or more segments, where each segment has
a start and an end point, which is either an element or a corner. Segments
itself cannot be moved since they represent the shortest way between these
elements. Therefore you have to move the associated elements.
To place a complex connection (with some corners and/or elements) at another
part of your schematic first select all elements of this connection. Then move
this group to the target place. The arrangement stays unchanged.

21.5.5 Delete a connection
To delete a connection simply remove a segment, a knot or the element at one
end of the connection. Since the editor does not accept broken lines it deletes
the complete connection.
You can delete only selected elements. That means that you have to select at

265

KAPITEL 21. THE SWITCH EDITOR

least one segment, knot or element of the connection before you can delete it.
Use Undo to call back the state before the deleting.

21.6 Execution mode
In the execution mode the drawn circuit is activated and transferred to the ana-
lyzer. To enter this mode click on the hand symbol of the toolbar or press F4.
The curser shape (hand) symbolizes an operating of the switching elements.

Switch RTS
just by a insert an

interactive switch decal...

Each time you click with the ’hand’ cursor on an interactive switching element,
the respective operation is triggered. In this case the RTS line of port A is swit-
ched from the positive to the negative level as long as the element is clicked (it
is a push button). After releasing the button the RTS line is again connected to
the positive level.
Interactive switching elements are marked with a ’button’.

21.6.1 Switching errors
The editor differs two possible kinds of errors:

Static errors
Dynamic (run time) errors

Static errors already occur while drawing the circuit, e.g. the connection bet-
ween two OUT connectors. These errors are directly suppressed, they are not
allowed. Try to connect two OUT ports, you won’t succeed.
Dynamic or runtime errors cann not be recognized while drawing, since they

Run time error
caused by a signal loop

are occur in the execution mode. As example the following endless loop. Here
the out signal rts is switched to itsself as soon as the switch is operated. In this
case the state of the signal was undefined.
In case of a run time error the execution by the anaylzer is suppressed, no
switching is done.

21.7 Input and output elements at port A and B

Default settings
of the analyzer

For every line rsp. every Pin of port A and B an input rsp. output element is
assigned (exept the GND line at Pin 5). The elements for port A are yellow, for
port B they are blue. As a memory hook memorize Blue like port B.
The left circuit shows the default of the analyzer wenn no changes are done
by the switch option. All signals are connected straight 1:1. The taps for the
recording are set at RXD and TXD as mainly used. Please note that unused
Output signals are automatically switched to ’off’.

Reset the internal routing

You can restore this state at any time by clicking the reset symbol in the
tool bar. By Redo you can switch back to your own schematic.

According to the RS232 standard and the hardware these signal elements are
limited resources. You can use them only once. An already added element can-
not be used again.

266

21.8. DATA INPUT AND RECORDING

So the lines RXD (port B) and RTS (port A) in

Easy assignment
of the RS232 signals by
adaptation of list entries

and names

the left figure are no longer part of the list of the
available output signals since they already exist in
the circuit.
To make the operation easy the selection list
offers two additional details. After each signal-
name the port and the pin number is dis-
played. Also the names are automatically adap-
ted to the current pin names, see the right figu-
re.

21.8 Data input and recording
Connect the data input element to the output lines, where any data shall fed in.
The left figure shows the normal data flow for the RXD line while the right one
breaks it and allows the input of own data.
To acivate the data input click on the gear wheel
symbol in the data input element. The button chan-
ges to a ’pressed’ state and the following dialog
appears (with the last inputs of this session). To
close the dialog either click on the close symbol of
the dialog or again on the button of the input ele-
ment.

Data injection
into any line just by click...

The data input dialog has four input modes, selec-
table by ’Input Mode’ in the tool bar.

...to open the input dialog

Mode Description
Line After entering and correcting the text it is finished and

transferred by hitting enter.
Line with hex Just like the line mode, but additionally non printable

characters can be sent with $xy, where xy must be a
valid hexadecimal value, e.g. $0A for line feed. To send
the $ character enter its ASCII value $24.

Direct Every entered character is sent immediately. A correc-
tion is not possible. All keys, including the delete or
cursor keys are sent as key codes.

Expert This special hex input mode allows you to specify
certain ’delays’ between two successive bytes by
adding a baud rate clock value (or count of stop
bits) after the plus sign. The allowed range is 1
(standard) to 127 (hex 7F). For instance: The in-
put: 01 06 00 02+30 00 02 inserts a ’pause’ of 48
baud rate clocks after the fourth byte 02 (the clock is
also in hex, 30h means 48 clocks). This comes in ha-
ny when simulating gaps for time critical protocols like
Modbus RTU or Profibus.

267

KAPITEL 21. THE SWITCH EDITOR

Expert 9-Bit Like the expert mode but for sending 9-bit data. All
data input accepts 3 digits, e.g. 1FF+20 03 80 101
sends the first and last byte with set ninth bit and a
delay of 32 clocks between the first and second byte.

Besides the input of any character also the simulation of framing or parity errors
are possible. In this case the analyzer sends the characters together with a
wrong parity bit or a wrong number of data/stopbits.

Breaks

A break is a special signal where the send line is set to a logical 0 for
a defined time. Breaks are recognized from the receiving RS232 SIOs
and are commonly used for Reseting the connected Unit. With the break
button you can generate the break condition.

You can close the input dialog at any time without losing the entered lines/cha-
racters. A simple click on the switching element and the dialog reappears in
its last state. (The dialog is not completely closed but simply hidden from the
application).

21.9 Data logging
The switch option enables you to choose, which line you use as the data line
for receiving serial data. Instead of the common RXD and TXD line you can
select any other input signal. It is uncommon to use the RI lineas the data
channel. But that does not mean, that you always have the standard RS232
pin assignments. With the possibility to choose the data lines you can spare
the making of a special adapter.
The left image shows the normal state. This is the
default circuit for the analyzer. The data lines are
1:1 connected and are internally used for data log-
ging.

Data logging tap
at any desired line

In the right figure the presumptions are a bit dif-
ferent. At port B (blue) the send line is led to
Pin 9 of the D-sub connector. The receive line
is connected to pin 4 of the connector. Because
the device at port A has a correct pinning all li-
nes are rerouted and the logging tap accordingly
set.

21.10 Signal tapping
If the RS232 inputs and outputs are in direct connection it is not relevant where
the line is tapped by the analyzer to sample the current level since the level is
the same over the complete connection.
This changes as soon as you manipulate the line, e.g. when you invert or break
to alter the level manually. If the level is sampled before the inverter or switch
the level in front of the circuit is recorded and not the resulting level, evoked by
the circuit.

268

21.11. RESET TO DEFAULT/FACTORY SETTINGS

As default the tap is placed directly behind the
RS232 input buffer, i.e. at A. As soon as you
break the RTS line, e.g. to simulate a RTS le-
vel change, the analyzer will further sample the
current level at the RTS input (A), but not the
level, modified by the switch.
If you at the same time open the virtual LED

tester you will see no change, even when you operate the switch.
You can change this behavior when you set the sample tap just in front of the
output buffer, behind the switching circuit. This is done in the setup dialog. In
this case the sampling takes place not at point A but at point B and makes all
level changes, evoked by the switch, visible for all views.

21.11 Reset to default/factory settings
With the switch editor you can easily modify the routing of your RS232 lines in
a wide range. This is an unique feature - but just as simple you can lost the link
between the two participants of your connection by accident.
The MSB-RS232 analyzer resets the connection between the two ports to the

Resets the analyzer
routing to the ...

... default factory 1:1
routing

default or factory settings when switched off and on again. Another - more ea-
sier - way is to click the reset button in the toolbar, see 21.3.
By clicking the reset button in the toolbar, the default 1:1 routing circuit is re-
loaded. Like with other modifications you must first apply the new circuit to the
analyzer with F4 (or select the execution mode in the toolbar).
Note! Loading the default 1:1 circuit replaces your current drawing without any
warning. But this doesn’t matter since you can go back to your former drawing
every time with the toolbar undo button.

21.12 Load and save schematics
The editor has an autosave function. As soon as you leave the program the
current schematic is saved in your home directory. Under windows it is
c:\documents\user name\
and under Linux it is /home/user name/.
The schematic is saved as .autosave.msbdrw.
Of course you can save your current schematic under any name. Click on
File→Save as... and select name and and position for your schematic.
To load a saved schematic or to view a sample circuit from the installation di-
rectory/circuits click on File→Open or push Ctrl+O. To save again an already
saved schematic push Ctrl+S resp. click on File→Save.
The schematic files are net lists, saved in text format. You schould never change
these files manually.

21.13 Licensing
The switch option is not part of the standard software and has to be ordered
separately.
But you can check it out. The analyzer offers a limited number of Demo sessi-
ons. That means the following:
A demo session is counted when you open the editor at least one time while
running the MSB-RS232 program.

269

KAPITEL 21. THE SWITCH EDITOR

While the analyzer program is running you can start the editor as often as you
like. Only the first start counts.
When you do not open the editor no try is counted.

A demo session is not limited in any way. You can enter schematics load, save
and execute. As long as you do not close the main program you have enough ti-
me to open the editor and prove its capabilities. Under Help→About control pro-
gram in the control program you will find the number of still available trials.
When all trials are used you still can use the editor. However no switching com-
mands will be transferred to the analyzer.

21.13.1 Buy a license
If you want to use the option unlimited you hav to buy a license. It is enabled by
entering an option key. The key is unique for every analyzer. For enabling you
need the serial number and the old key. You can find both in the menu of the
control program under Opions→Purchase a option.
The new license key is sent by email or fax. The switch option is enabled as
soon as you as you enter the key under: Options→Register an option. Under
Options→Show installed options you can check the successful register.

21.14 The toolbar
The toolbar serves for a fast access to the most used functions.

A End: Finishes the editor. The current schematic is automatically saved
and recalled at the start of the next session.

B Pin settings: Applies (pins) the current window settings as default setup
when open again.

C Edit mode: Select one of the three input modes: input/placement of
decals, drawing connections and execute the circuit.

D Reset: Sets the analyzer to its default. Both ports A and B are connec-
ted via 1:1 connection with the logging channels RxD and TxD.

E Undo/Redo: Cancels the last change (undo) or recalls the last state
(redo).

270

21.15. SHORT COMMANDS

21.15 Short commands

Short commands
for the most important
functions

Aktion Kurzbefehl

Online help for the Switch Editor F1

Edit mode F2

Connection mode F3

Execution mode F4

Delete selected decals Del

Select all decals Ctrl+A

Reverse selection Shift+Ctrl+A

Flip selected decals horizontally (mirroring) H

Show/hide the log window Ctrl+L

Switch raster on/off #

Undo last operation Ctrl+Z

Recalls the last state before undo Shift+Ctrl+Z

Start a new circuit (empty drawing) Ctrl+N

Open a circuit Ctrl+O

Save current circuit Ctrl+S

Save current circuit under another name Shift+Ctrl+S

Save the current circuit and close switch editor Ctrl+Q

271

KAPITEL 21. THE SWITCH EDITOR

272

22
Synchronize two analyzers

You have two connections (RS232 and/or RS422/485) which you
want to watch or examine in parallel, for instance IN and OUT
data of a protocol converter, different bus segments or generally
interdependent data transmissions.
How you have to proceed and what is to be regarded is
described in this chapter.

For a simultaneous recording of two separated connections you need two MSB
analyzers. But this is only one requirement. To compare two recorded data files
the data have to be in a precise time relationship. Without this relationship you
can neither decide about the chronological sequence nor check the synchroni-
city of certain events.
For example when was a data byte or data sequence sent in relationship to the
data of another connection. What happened in both connections at a defined
point in time.

22.1 Technical requirements
One of the outstanding features of the MSB-Analyzer is the exact time mea-
surement and visualizing of the time behavior in microsecond resolution. This
precision is necessary to deliver correct results even for higher baud rates and
is also valid for the common analysis of two connections. What does this mean?

Imagine two agents which shall enter a secured building and have to watch
and record the way of the guards at different positions. Before they begin they
compare their watches. This is done within a difference of a typical one second
divergence. Both agents have watches which differ not more than one second
per day. It doesn’t bear contemplating if both watches would disperse after so-
me minutes. Now each agent proceeds to his position.
Each one notes the point in time (seconds precision) of the change of guards.
As the watching takes some days both agents synchronize their watches re-
peatedly at midnight by a short radio pulse from one of the agents.

For the successful execution of their plan they have to know each step of the
guards within a difference of one second.
The same procedure but with a far higher precision must be performed for the
simultaneous recording of two connections. The time comparison at the begin-

273

KAPITEL 22. SYNCHRONIZE TWO ANALYZERS

ning is done by the exact simultaneous start of the recording, where simulta-
neous means a precision of one microsecond.

Of course the clocks of both MSB-Analyzer are more precise than the watches of
the agents, but nevertheless they also differ from each other because of small
natural differences of the crystal oscillators. They have to be synchronized in
regular intervals. The MSB-Analyzer uses for both, the synchronous start and
the regular timing of the clocks an additional synchronizing connection.

For this purpose each MSB-Analyzer offers a so called ’MSB-Link’ jack in RJ45
design. To synchronize two analyzers simply connect them with a standard net-
work 1:1 cable. Please regard that although standard network cables are used
you must not connect the analyzer to another data network. The signals are
not compatible and the analyzer could be damaged.

It doesn’t matter if both analyzers are connected to the same or different PCs.
The PCS also do not have to share a common network. The only restriction
is the length of the synchronizing cable between both devices1. The synchro-
nizing affects only the start of the recording and the precise keeping of the
common time basis. That means that the time stamps of both analyzers are
comparable on millionth second.

Furthermore both analyzers work fully independent. That means that you can
record completely different protocols and events (baud rate, data format a.s.o.).
Moreover you can connect a MSB-RS232 and a MSB-RS485 analyzer to simul-
taneously analyzer RS232 and RS485/422 connections, for example in inter-
face converters.

22.2 Master Slave operation
It makes no sense to start the recording of the synchronized analyzers sepa-
rately. Especially if both devices run at different PCs which may be at different
locations. Start, Pause, Stop of the common recording are operated from a
before as ’Master’ defined analyzer. This one is freely selectable. The second
analyzer, connected via the synchronizing cable, is automatically set as ’Slave’
and controls its own recording synchronous to the Master with microsecond
precision.

Both synchronized analyzers can be configured in the way that the recorded
data are automatically stored to a predefined storage location when the record
is stopped. This can be a local drive of the PC where the respective analyzer
is connected to. It can also be any other drive, for instance a network drive. So
both analyzers can store their data on the same drive but in different files.

The recorded data files are named with the serial number of the analyzer and
the date/time of the start of recording. Additionally you can place any character
string at the beginning (prefix).

1Tested was a CAT6 network cable with 100m length.

274

22.3. ESTABLISH A SYNCHRONOUS RECORD

22.3 Establish a synchronous record
Now you have a rough idea of how the synchronous recording works. Let’s
come to the practical part. Imagine you have two RS232 connections you want
to record commonly. To simplify matters the recording is done at only one PC,
where both analyzers are connected to.
At first connect both devices via a standard network cable. We recommend
cable of category CAT-6, but for the most applications cables of category CAT
5 are sufficient.

Warning!
Please note that the analyzer must NOT be connected to a PC network
through the MSB Link jack. This will probably result in a damage of the MSB-
Analyzer.

Start the Analyzer software with the desktop icon. If multiple analyzers are
connected to the same PC you have to select the wanted analyzer from a list
(select connected analyzer). Repeat this step for the second analyzer. The sa-
me procedure applies even if the analyzers are connected to different PCs.
Place both control programs (each connected to a different analyzer) on the
screen.

Still both devices work independently of each other. You can start, stop or pau-
se the analyzers individually. They also work on different time bases.
Since both analyzers can record different connection protocols or types (RS232
or RS485) you first have to configure each analyzer according to the require-
ments of the examined connections. This is done just like the recording of a not
simultaneous recording. Set all the required parameters in the settings dialogs
of the analyzers.

Choose a storage place
for the automatically
stored records

By default both analyzers store their data on the desktop as soon as the recor-
ding is stopped by the Master (by you). You can also set the place to any other
location by selecting another directory in the settings dialog ’Auto store’.

The file name is set by the analyzer program itself to avoid errors for repeated
storing by already available files. It also makes it possible to assign the file to
the analyzer exclusively.
The file name consists of the following parts, here a sample of the analyzer
with the serial number MSB01060, started on 16th of April 2014 at 15:32.17.

MSB01060-20140416153217.msblog

Additionally you can place any character string in front of the name as a prefix,
e.g. MASTER or SLAVE.

After having configured both devices you only have to set the Master for syn-
chronous recording (assumed both analyzers are connected via network ca-
ble).

Master and Slave
Specify the record master

Activate the device which shall be the Master device. This is done in the set-
tings dialog under ’Analyzer is Master’. In the program display the word Master

275

KAPITEL 22. SYNCHRONIZE TWO ANALYZERS

is shown above the running recording time.
At the same time the analyzer, which is connected to the Master, displays the
word ’Slave’ in its program display and the buttons and menu entries to control
the recording are deactivated.

As soon as you uncheck the Master entry both analyzers are autonomous de-
vices again. The same applies if you disconnect the link cable.

Close the settings dialog and click in the control program of the master on the
start button. Both devices change to the record mode, indicated by the respec-
tive button display and the red LED at the analyzers themselves.
Click the Pause button of the master to hold the recording.
After clicking the stop button of the master the recording of both analyzers are
finished. They automatically store their data on your desktop or any other spe-
cified directory.

You can repeat this procedure any time. As soon as you click the start button
both analyzers will start a new recording and and after clicking on stop they will
store them as two new data files.
This way of operation does not differ if both analyzers are connected to different
PCs which may also be placed in different rooms. The only requirement is the
connection via the link cable.

22.4 Analyse a synchronous record
The MSB-Analyzer software is optimized to visualize a single recording by multi-
ple different views. The loading of multiple record files is not possible because
two or more records with different settings makes no sense within the applica-
tion. For instance a RS232 and a RS485 recording need different displays and
dialogs2.
But how can two records be analyzed at the same time?

The Analyser software consequently extends the already available communi-
cation between the views of a single application to multiple parallel running
applications. That means that like the the signal monitor follows the cursor of
the data view now all views of the separately running analyzer programs are
synchronized to the cursor That has a number of crucial advantages:

Comparing analysis of differing recordings (baudrate, protocol, type of commu-
nication, ..).

Synchronous moving and parallel display of certain ranges in both records (e.g.
search for events in record A and showing the respective signal sequence in
record B).

No new operating scheme, no new menus.

Therefor the analysis of two synchronized recordings is not different to the ana-
lysis of a single recording. Instead of starting only one analyser application you

2In the end a running MSB analyzer program application correspondents to ONE recording.
This is the same as for Audio or Video applications.

276

22.5. SYNCHRONIZE MORE THAN TWO ANALYZERS

now start two different programs for the Master and the Slave recording.

For the evaluation in conjunction you do not need a connected analyzer. The
examination can be done as is usual in the offline mode.
Click on the master and slave recordings one after another. Both applications
make the accustomed access to the respective data. The views of each app-
lication synchronize their windows if the synch. Mode is activated in their tool
bar.

To synchronize the views between BOTH running applications you first have
to enable this feature. By default the synchronization from external sources is
disabled.
The enabling is done for all Views of an application centrally in the control pro- Ext. Synchronisation

is enabled in the record
settings

gram at ’common settings’. Activate ’allow external synchronization’.

By enabling the external synchronization the control program receives the mou-
se clicks or events (search results, region selection, etc.) from a parallel run-
ning analyzer application and passes them to its opened views. Each view with
active synch. setting reacts on these events and actualizes its display.
In this way you can watch the slave recording at any time point in the master Synchronous display

of all Views in both
records

recording and vice versa. Both applications keep their views synchronous to
one defined time stamp.

22.5 Synchronize more than two analyzers
In rare cases synchronizing two analyzers is not enough. What, if you have to
make a synchronous record with three or more devices?
As described above: The idea behind the synchronization is, that the master

MSB-Link-Doubler
doubles sync pulse

adapts the clock of the linked slave to its own by sending a special pulse/signal
over the MSB Link connection.
If we split this signal into two, the master is able to synchronize two slaves. And
we every additional split we can synchronize another one.
IFTOOLS offers such a split device as MSB-Link-Port-Doubler. Inserting the
doubler cable into the MSB-Link port of the master provides you with now two
link sockets where you can connect two slave devices or another doubler in
case you need more than three synchronized devices.
You will find the doubler and the detailed description as an optional analyzer
accessory in our web shop.

22.6 Conclusion
The comparing recording or analyzing of two separate connections requires a
high precise reference to set the recorded data and events in relationship to
each other.
These chapters showed you why this is necessary, which technical require-
ments have to be fulfilled and how such a recording has do be done with two
MSB analyzers.
Here come the necessary steps again without ballast.

277

KAPITEL 22. SYNCHRONIZE TWO ANALYZERS

22.6.1 Synchronous recording
1 Connect both analyzers which shall be synchronized via a standard network

cable.
2 Connect both analyzers to one or two PCs.
3 Start a separate MSB analyzer program for both devices.
4 Set up individual connection parameters for both analyzers.
5 Check if the automatic storage after record stop is activated and specify a sto-

ring location if necessary.
6 Define one of the devices as Master in the set up dialog of the appropriate

application program at ’Record’.
7 Start the synchronous recording at the master control program.
8 The recording is also stopped by the master whereas both records are auto-

matically stored separately.

22.6.2 Synchronous analysis
For the evaluation of two synchronously logged records you do not need a
connected analyzer, but both MSB analyzer programs have to run on the same
computer because a synchronization of the views is not possible through the
network cable in opposite to the synchronization of the recordings themselves.

1 Double click on both (master and slave) recordings resp. start two MSB-Analyzer
programs. Load the files into the control program.

2 Activate in both programs under ’General’ the entry ’allow external synchroni-
zation’

3 Place both control programs and the wanted views on the screen.
4 Navigate as used through both recordings. The views in synchronous mode

will automatically align their content to the examined time period.

278

23
Commandline API

You want to automatize the recording of a data connection and
process the recorded data in your own application, or to store
respectively output them?
A long recording should saved as several sequenced files or
splitted afterwards.
You like to control the analyser from within your application.
The MSB-Analyzer software offers a series of powerful tools which
we will describe in this chapter.

After installation of the analyzer software you will find some helpful other tools
in the installation directory beside the programs for operating the MSB-RS232
and visualizing the recorded data.
All these programs are based on command lines and might be used as part of
batch files or shell scripts. According to the Unix philosophy ’Do only one thing
but do it well’ each of these programs has only one function. By their capabili-
ty to read from the standard input and send their results back to the standard
output these programs may be combined in any way (program tool chain).
Further more: You can combine them with a lot of other programs which are
able to handle data via standard input/output.

The command line programs in overview:

msb_record
This tool controls the analyser and writes all received data to the standard
output or in a given file.

msb_format
Output the analyser data read from standard input in a user specified format.

279

KAPITEL 23. COMMANDLINE API

msb_filter
Filters the analyser data passed from standard input to output by user defined
rules.
msb_split
msb_split reads data or a record file from the standard input and splits the
output into smaller record files.
msb_trigger
Checks the data from the standard input against some given trigger conditions
and start or stop passing the data to standard out according to the result.

23.1 Combine the programs as a tool chain
You can simply put the tools mentioned above together to work as a proces-
sing chain. Thereby each program processes data of the former program and
forwards it to the next tool in the queue.
The processing (tool) chain always consists of a data source and a data sink.
The single programs can be linked with the ’|’ operator which is identical for
Windows and Linux.

DATASOURCE | MANIPULATOR1 | MANIPULATOR2 | ... | DATASINK

23.1.1 Data source
Each tool chain starts with a data source. The data source provides the followi-
ng programs with the necessary input, here most of all the tool msb_record.
But the output of a already existing analyser record file via type (Windows)
respectively cat (Linux) works just as well. For instance:
type recordfile.msblog or cat recordfile.msblog

23.1.2 Manipulators
A program which modifies the data during the forwarding is called a manipula-
tor. A typical manipulator might remove special parts of the read data before it
pass it on the next link in the chain or change the read data in another format
specified by the user.
Therewith you can extend or complete the processing of the data simply by in-
serting any number of manipulators in the processing chain. One manipulator
might remove unwanted data before the next tool converts the remaining data
into another format, for instance with the msb_format.

23.1.3 Data sink
A data sink specifies the end of the processing chain. A typicall sink is the
screen output (of a command line window) or a file storing the data.
But a data sink might be also your own application which read the resulting da-
ta and processes it for your own purpose, for instance a LabView application.
The msb_split tool is a representative data sink. The program doesn’t for-
ward the data to other tools but stores it as serveral files on your hard disk.

23.1.4 Some examples
The program folder of the MSB-Analyzer software will be added automatically
to the search path for executables during installation. For a first try, you just
have to open a command shell (console). We will use the example records
coming with the software package as a data source. Therefore you don’t need

280

23.2. RECORD DATA WITH MSB_RECORD

a connected analyser.
Go to the example directory and pipe a record into the msb_format program
like:

type DataView\9bit.msblog | msb_format

Linux users have to use the cat command instead of type. The command
type recordworks as a data source like an active recording with msb_record.
msb_format is the manipulator tool in the processing chain and forwards the
result to the command line window which stands for the data sink and just dis-
plays the result on your screen.

Now use the msb_split tool to split the same record file in several little pieces.

type DataView\9bit.msblog | msb_split -n1000

Without any arguments msb_split simply creates the following two files in the
current directory named as xaa.msblog and xab.msblog.
You will find more detailed information about these tools in the program relating
sections below.

23.2 Record data with msb_record
As the name indicated this program controls the operating and recording of a
connected MSB-Analyzer. At the same time msb_record functions as a data
source for all other tools.
Called without any further arguments msb_record searches for a connected
analyser, transferes the firmware if needed and starts a new record of all trans-
mitted data bytes with 115200 baud and 8N1 protocol as default.
If the tool doesn’t find any device or detects more than one analyser, it will give
you appropriate message. In the last case you can select the proper analyser
by passing the serial number of the analyser to the program.

msb_record writes the recorded data directly to the standard output to ma-
ke them available for the other tools. We will illustrate this with the following
example, inputed directly on the command line window:

msb_record | msb_format

All recorded data are forwarded with the pipe operator ’|’ to the next program
in the tool chain, here the msb_format1. The latter reads all data received
from it’s standard input, makes some transformation and put the result to the
standard output again. In this case - unless there are more programs in the
queue, it writes it just as a simple informal list.

1 3.501328 A "104 0x68 ’h’ "
2 3.501414 A "101 0x65 ’e’ "
3 3.501501 A "108 0x6C ’l’ "
4 3.501588 A "108 0x6C ’l’ "
5 3.501675 A "111 0x6F ’o’ "

1You can of course execute the msb_record tool standalone. But because the outputed data
is in a binary format this doesn’t make any real sense.

281

KAPITEL 23. COMMANDLINE API

Press ’Ctrl+C’ to abort the program.

In general you will use msb_record either in a combination with other com-
mand line tools as shown above or to write the output directly into a file. There
are two ways to save the recorded data as a file. You can redirect the output
like:

msb_record > output.msblog

Or you pass a file name as an additional argument:

msb_record -o output.msblog

23.2.1 Connection settings and events
We didn’t bother about the connection properties so far and called the record
tool implicitly with its default settings. We restricted ourself also to record only
the transmitted data bytes and ignored the change of the line states.
Imagine you have a serial connection working with 38400 baud, 7 databits and
an even parity. The MSB-Analyzer doesn’t worry about the number of stop bits,
but nevertheless we will assume 2 stop bits here.
Beside the raw data bytes we like to analyse the line level change of both data
transmission lines (here RxD, TxD) as well as the handshake control lines RTS
and CTS. The call of the msb_record tool is described as follows:

msb_record --baudrate=38400 --protocol=7E2 --logsignals=2,3,6,7

or in a short form:

msb_record -b 38400 -p 7E2 -l 2,3,6,7

We will show another way to pass the parameters via a configuration file later.
For now and most important:
Don’t separate the arguments from the associate program! In the command line
above all msb_record parameters have to specified before the pipe operator.

msb_record -b 38400 -p 7E2 -l 2,3,6,7 | msb_format

This applies for all tools, programs belonging to the MSB-Analyzer and also other
ones.

23.2.2 Usage in your own application
Maybe you thinking that’s all pretty interesting, but how can I use these tools
within my own application?
Your application only has to fulfil the following requirements:

1 Execution of any command from within your application.
2 Read of a file opened/written by another process.

That sounds worse than it is.
The most programming languages come with a special function to execute an
external command. For instance: C has the system and popen function, Lab-
View offers a System Exec VI. You can call an external command mostly in two
ways:

282

23.2. RECORD DATA WITH MSB_RECORD

First: The caller (your application) waits until completition of the command. We
don’t recomment this, because it would block your application.
Second: The command chain is executed as a so called detached process. In
this case the function (with the command chain) returns immediately to the cal-
ler and the command chains works parallel to your application.

So far as good, but how can you get the results of the command chain?
Your tool chain can write the results in a file where you read them back from
within your application. Or: You fetch the results directly from the tool chain
output. Which of one fits you best depends on your application language.

The detached tool chain process will be stopped and closed automatically at
the end of your application. But there is another option to control the data col-
lection of a parallel running msb_record.

23.2.3 Remote control
The msb_record tool contains a simple and easy to access inter process
communication method which works for both platforms (Linux and Windows)
equally.
Sending a command to a running background process is done by calling the
msb_record program with the parameter ’-r command’ or executing the com-
mand from your application via system call.

Just open two command shells and start a record in one of them with:

msb_record | msb_format

The connected MSB-Analyzer is initialized and the recording is started, indica-
ted by a permanent lighted red LED1. It doesn’t matter if there aren’t any data
available.

Now switch to the second console (command window) and stop the recording
with:

msb_record -r stop

The execution of the stop command can be checked by watching the analyzer
red LEDs. They are blinking alternatively again.
To start or resume the recording repeat the call but now with the command
’start’:

msb_record -r start

The command msb_record -r quit ends the process respectively the tool
chain and closes the output channel/file.

23.2.4 Synchronous recording with two or more analyzers
Every analyzer has a MSB Link connector to synchronize the recordings of two
or more devices (using an MSB Port-Link Doubler from IFTOOLS) with one mi-
crosecond resolution. We described this special operation and its benefits in
detail in the chapter 22.

283

KAPITEL 23. COMMANDLINE API

But synchronized recordings are also possible with the command line tools.
Here we therefore will explain the handling of two linked analyzers via the API
tools.

Let us assume that you have two analyzers. Both are connected via the MSB
Link sockets. When using the graphical software you first start a program ap-
plication for each analyzer. In a second step you have to select one of them
as ’Master’. The remaining analyzer becomes a ’Slave’ automatically. A proper
setup provided, you then just have to click the record button in the Master app-
lication to launch the recording.

Command line tools are different by nature. The program msb_record has
neither a dialog to choose ’Master’ or ’Slave’, nor a button to start the record
when both analyzers are connected and ready. So you have to tell the analy-
zer which one is a ’Master’ and which is the ’Slave’ by passing an according
program argument. And since there are at least two analyzers connected with
your computer, you have to pass the serial number of the master or slave too.
Both commands - for the ’Master’ and ’Slave’ - must be started in their own
shell (or DOS command window).
At first we input the record command for the ’Master’ with the serial number
MSB01000. We use the default settings and pipe the output directly through
the formater tool. Please adapt the serial number to your own analyzer.

msb_record -nMSB01000 --sync-mode=master | msb_format

As soon as you hit the Enter key, the command prompts you with a request
to start FIRST the ’Slave’, THEN press Enter to begin with the record. What’s
that?
A synchronized recording requires the exchange of certain information bet-
ween both analyzers before they could continue. For instance and most of all
time relevant data.
So let’s open a second command shell (or DOS box) and start the slave with:

msb_record -nMSB02000 --sync-mode=slave | msb_format

Again: The serial number is just a placeholder. Don’t forget to change it to the
number on your second analyzer!
Both analyzer are now in a ’ready for record’ state, their red LEDs flashing
alternately. And more important! The slave device is active and able to process
the timing data the master will broadcast with the beginning of the record.
If anything is arranged, hit the Enter key in the master shell.
Two things are happening in the following:

1 The master passes the correct record start time to the slave2.
2 The master gives the start command and provides the slave periodically with

synchronous impulse over the link cable.

Afterwards both commands (in both shells) are interacting independently and
behave as when executing a normal (not synchronous) record. You can extend
the command with additional parameters or pipe constructs and write/split the
output of the master and/or slave in different files.
Press Ctrl+C in each command shell to finish the according process.

2Remember that the master and slave must not run on the same computer.

284

23.2. RECORD DATA WITH MSB_RECORD

23.2.5 Remote control a synchronous record
Starting two master/slave processes via command line may be sufficient for
small or rarely happening tasks. Beside this the command line tools are often
used in scripts to automatic certain jobs. And here the preliminary description
reveals a pitfall. How can you input the Enter key requested by the master when
executing the command in a batch or script file?
You can - of course - using a process pipe and redirect an Enter to the master
command process. But it isn’t always trivial, and luckily there exists an easier
solution too: Broadcasting a remote command:
First a little batch file for Windows user:

1 rem Synchronous record
2 echo " { } I n i t i a t e master . . . "
3 s ta r t msb_record . exe − i −nMSB01000 −−sync−mode=master −−paused −o master . msblog
4 timeout 2 >nul
5 echo " { } I n i t i a t e s lave . . . "
6 s ta r t msb_record . exe − i −nMSB02000 −−sync−mode=slave −o slave . msblog
7 timeout 2 >nul
8 echo " Star t synchronous record . . . "
9 msb_record . exe −r s ta r t

And here the Linux variant:
1 # ! / b in / bash
2 echo " I n i t i a t e master . . . "
3 msb_record − i −nMSB01000 −−sync−mode=master −−paused 2>>/dev / n u l l −o master . msblog &
4 sleep 2
5 echo " I n i t i a t e s lave . . . "
6 msb_record − i −nMSB02000 −−sync−mode=slave 2>>/dev / n u l l −o slave . msblog &
7 sleep 2
8 echo " S t a r t record "
9 msb_record −r s t a r t

The procedure is similar for both operating systems.
First we start a background process for the master (line 3) and force him to wait
till we send him an according record start command by passing the --paused
parameter.
Windows (or the DOS shell) uses the start command, while Linux users put
the whole command into background by attaching an ending ampersand ’&’. In
Linux we also redirect the stderr (2) channel to /dev/null.

Background processing means: The command line is executed and detached
from the script executing shell (or DOS window). The command doesn’t block
and the script can proceed immediately with the next instruction.
Line 4 (and 7) gives the initialization a few seconds. The DOS command shell
has no particular ’sleep’ command, but the timeout may serve as well3.
The slave is started in line 6 and also executed as a background process.

At this point both analyzers are ready for recording and the master ’waits’ for
the trigger. Instead of pressing the Enter key (which isn’t possible, since the
master process is detached from any keyboard) we send him a remote start

3timeout is not part of Windows XP. An alternative way to simulate a given pause of 2s is:
ping 127.0.0.1 -n 3 >nul

285

KAPITEL 23. COMMANDLINE API

command in line 9.
Thereafter both commands run independent of each other. The master stores
the received data in the passed output file (-o) master.msblog. The slave puts
its data into slave.msblog.
The internal synchronization through the MSB Link connection guarantees that
the recorded events in the two record files are matching with the usual precision
of one microsecond.

23.2.6 msb_record program parameters
Call the program with:
msb_record [OPTION]...

[OPTION] can contain one ore more of the following program parameters. If
no parameter is set the default parameters are used. The following parameters
can be send to the program at start. All recorded data will be writen to the
standard output by default.
To send a command to a running background process the remote parameter
indication ’-r’ has to be entered followed by the command (start, stop, quit).

Parameter Description

--baudrate=rate OBSOLETE! Please use instead parameter -b or
--bitrate, see next!

-b rate
--bitrate=rate

Bitrate of the recorded connection, default is
115200.

--bit-order Bit order, MSB (most significant bit) first=1 (default),
MSB last=0. Only valid for Manchester.

--clock-delay Add an additional 1
2 clock delay for clock signals on

their limit. SSI only! Default is off.

-c
--config-file=file

Uses the settings specified in the given config file.

-C
--create-config-file

Creates a new config file msb_tools.config in
the current directory.

--disable-dataA Switches off the recording of all data bytes received
on Port A. Default is on.

--disable-dataB Switches off the recording of all data bytes received
on Port B. Default is on

--doubled-frame Special mode to check data integrity (rarely used).
SSI only. Default is off.

--frame-bits=bits Number of data/clock bits in a data frame. Valid bits
are 5...63, mandatory for synchronous bus systems.

-h
--help

Help. Output of all program parameters.

286

23.2. RECORD DATA WITH MSB_RECORD

-i
--initiate

Transfers the firmware to the analyzer, even it is al-
ready loaded.

--io1=operation Use digital auxiliary channel IO1 (only MSB-RS485
and MSB-RS485-PLUS). The possible settings de-
pend on the choosen transmisson mode. For valid
settings see section 23.2.6.1 below.
Example (output bus direction):
msb_record --io1=3

--io2=operation Use digital auxiliary channel IO2 (only MSB-RS485
and MSB-RS485-PLUS). Valid values see section
23.2.6.1 below.
Example (output bus validness):
msb_record --io2=4

-l list
--log-signals=list

Specifies the signal lines which are logged by the
analyzer. The lines are numbered from 1 to 8 as
they are displayed in the analyzer control program
(counted from left to right). For instance: -l 2,3 oder
--log-signals=2,3,6,7.

-L
--logic-mode

Switches the inputs to logic signal levels (only MSB-
RS232). Default are RS232 signal levels.

--memory-test Forces the analyser to executes an internal memory
test.

--nice=niceness The nice parameter controls the msb_record id-
le CPU time. Valid values are 0...10. A value of 0
means a nearly 100% CPU consumption, default is
1. A niceness value of 0 is only recommended in ca-
se of very fast data rates and high data flow-rate. I.e.
msb_record --nice=0

-n serno
--serno

Use the analyzer with the given serial number serno.

--output-buffering Activate the internal output buffer, which increases
the performance and avoids gaps in data records
with high data transfer rates.
Please note: With an active puffering the recorded
events doesn’t occurs immediately in the following
tool of the command chain, for instance if you like to
see all recorded events in a console window via the
msb_format tool.

-o file
--output=file

Output file. Default is the standard output (console).

--paused Starts the analyser in paused state. The record beg-
ins only after the program receives a remote start
command.

287

KAPITEL 23. COMMANDLINE API

-p protocol
--protocol=protocol

Protocol settings of the connection as combination
of number of data bits (5 to 9), parity (N)one, (E)ven,
(O)dd, (0)off, (1)on and stopbits (1,2). E.g. 8N1 or
7E2. Default is 8N1.

-r Command
--remote=command

Remote. Sends the following command to an alrea-
dy running program. The following commands are
supported:
quit quits and removes the background process
start starts or resumes a recording
stop stops or pauses the recording

--show-analyzers Shows all available (connected) MSB-Analyzer.

--sync-mode=mode Set the synchronization mode (autonom, master,
slave) when using two or more analyzers for syn-
chronous recordings. Default is autonom.

-t num
--time-delay=num

Transfer delay. Slows the firmware transfer down by
the indicated number num. 0 is no delay (default),
maximum is 100.

--transmission=mode Selects the transmission mode of the connected
bus. Asynchronous, synchronous SSI or Manches-
ter systems. Default is async. The possible values
depend on the used analyzer, see section 23.2.6.2
below.
Example:
msb_record --transmission=sync-ssi

--trigger-source=src Selects the trigger source for the data frame and da-
ta error output when enabled in the auxiliary digital
IO settings, see parameter --io1 and --io2. Pos-
sible sources are: A, B and A+B (default).

-u
--unique-file

Stores the recorded data in the current working
directory in a record file with an unique name li-
ke YYYYMMDD-HHmMMmSSs.msblog, for instance
20110324-03h04m41s.msblog.
This parameter is especially interesting in those ap-
plications where the record should start automati-
cally after a (re)boot of the PC.

-v
--verbose

Verbose, output of additional Information. .

-V
--verbose

Output of the program version.

288

23.2. RECORD DATA WITH MSB_RECORD

-w wiring
--wiring=wiring

Set the bus wiring (only MSB-RS485). The following
values are allowed:
0 : 2-wire tapping
1 : 2-wire segment analysis
2 : 4-wire tapping
3 : 4-wire segment analysis (masterbus)

23.2.6.1 Digital IO setup parameter
The available values for the digital IO depends on the chosen transmission
mode and analyzer typ. The following tables shows all possible variations. The
first column represents the number assigned to the --io[1, 2] parameter.

Number Description Transmission Analyzer

0 Input with pull down Asynchron MSB-RS485
MSB-RS485-PLUS

1 Input with pull up Asynchron MSB-RS485,
MSB-RS485-PLUS

2 Output static 0 Asynchron MSB-RS485,
MSB-RS485-PLUS

3 Output static 1 Asynchron MSB-RS485,
MSB-RS485-PLUS

4 Output of the bus direction Asynchron MSB-RS485,
MSB-RS485-PLUS

5 Output of the bus validness Asynchron MSB-RS485,
MSB-RS485-PLUS

6 Output CHN1 validity Asynchron MSB-RS485,
MSB-RS485-PLUS

7 Output CHN2 validity Asynchron MSB-RS485,
MSB-RS485-PLUS

8 Output CHN3 validity Asynchron MSB-RS485,
MSB-RS485-PLUS

9 Output CHN4 validity Asynchron MSB-RS485,
MSB-RS485-PLUS

10 Output data error Asynchron
Synchron SSI
Manchester

MSB-RS485,
MSB-RS485-PLUS

11 Supply +5V/50mA Asynchron
Synchron SSI
Manchester

MSB-RS485-PLUS

12 Output data frame Synchron SSI
Manchester

MSB-RS485-PLUS

289

KAPITEL 23. COMMANDLINE API

23.2.6.2 Transmission parameters
The supported field-bus transmissions depends on the used analyzer. The older MSB-
RS232 and MSB-RS485 allow only the analysis of asynchronous transmissions whe-
reas the PLUS types support synchronous and Manchester coded transmission. The
following table gives you an overview about the available values for the transmission
parameter:

Parameter Transmission Analyzer

async Asynchronous transmissions all

sync-ssi Synchron SSI transmissions MSB-RS232-PLUS,
MSB-RS485-PLUS

manchester-1 Manchester I (G.E. Thomas) MSB-RS485-PLUS

manchester-2 Manchester I (IEEE 802.3) MSB-RS485-PLUS

manchester-t0 Differential Manchester T0 MSB-RS485-PLUS

manchester-t1 Differential Manchester T1 MSB-RS485-PLUS

23.3 Formatted output with msb_format
The msb_format tool allows you to format the recorded analyser data for your own
purpose. For instance if you like to see the data as CSV (comma separated values).
Without any parameter you will get a list of the occured events, each one with informa-
tions about the time, the kind of event, the data value or line state. This complies with
the format specifier ’I’ which is the default setting.

To specify your own output format, call the program with the format parameter -F or
--format=. All following characters are seen as format definition. A space character
or all ’white space’ characters like Tab or Enter end the format string. If you want to
define a space character as part of the output you have to quote it. How to do this is
explained in chapter 23.3.1.
We restrict ourselves to the simple case of displaying the data bytes together with their
time stamps. In every line the time in seconds and the data byte shall be listed, separa-
ted by a comma. The appropriate format string4 is: T,B

We will use an example record as data source so you can try the following samples
without a connected analyzer. Please keep in mind, that it will be work the same way
with the msb_record tool.
Open a command shell (again), go into the DataView example folder
(i.a. msb-VERSION/examples/DataView) and input:

type modbus-ascii.msblog | msb_format -FT,B

The output looks like the following:

...
5633.304127,48
5633.305162,70
5633.306197,57
5633.307226,13
5633.308261,10

4A list of all format identifiers can be found in the format identifier table.

290

23.3. FORMATTED OUTPUT WITH MSB_FORMAT

The output can be changed from ASCII to binary representation. ASCII means that the
decimal binary value is coded into ASCII numbers as a string (e.g.’104’ = hex binary
31,30,34) while binary means the value itself which is displayed according to the ASCII
table (in this example as ’h’).
Binary mode makes sense if you want to write the data into a file and read in by another
application. An inconvenient conversion of the ASCII representation into native program
types as double or integer might be omitted.
The format identifier % activates the binary output while @ switches back to ASCII
(default). The following example displays the characters in their binary value:

type modbus-ascii.msblog | msb_format -FT,%B@

Please note that in binary mode no line feed is issued. Therefore we switch back to
ASCII mode after each binary data output.

...
5633.304127,0
5633.305162,F
5633.306197,9
5633.307226,
5633.308261,

Disable line feed in ASCII Mode

To make the output in ASCII mode more readable a linefeed is automatically
attached after every output line. You can disable this behavior by calling the
program with the parameter –disable-linefeed or by ending the format string
with % (binary mode).

23.3.1 Output of any character
You want to insert a non-printable character or define a line feed, independent of the
operating system5.
Use the format identifier #ddd to define any character which shall be output instead of
this identifier. To separate the output of the data bytes by a tabulator enter the decimal
value of this character. e.g.

type modbus-ascii.msblog | msb_format -FT#009B#009S

Or: Separate the values by a space char (decimal 032):

type modbus-ascii.msblog | msb_format -FT#032#032S

To generate a line line feed under windows with a single linefeed character you have
to use its decimal value (010). To disable the standard system dependent line feed
character sequence in ASCII mode you end the string with % to switch to binary mode:

type modbus-ascii.msblog | msb_format -FT#009B#009S#010%

The character value has to be entered with three decimal digits (0 to 9). Any other input
leads to an error message.

5Under linux all lines are ended with a single linefeed, while Windows uses a combination of
Carridge Return/Linefeed.

291

KAPITEL 23. COMMANDLINE API

23.3.2 File output
You also can redirect the output to a file. Call the program with the additional parameter
’-o filename’.
Only the via format string defined outputs are send to the file, no status messages or
auxiliary outputs which you might have enabled through program parameter.
A simple file output is done with:

type modbus-ascii.msblog | msb_format -FT#009B#009S#010% -o test.log

23.3.3 Format parameters
The following identifiers are defined as format parameters. Please note that not mentio-
ned characters are output in the same way. Exceptions are the whitespace characters
that are all blanks, tabs and enter which are used to end the format string.

Term Meaning Description

% Binary Flag Switches to the binary output for all following parameter.

@ Ascii Flag Switches to the ASCII output mode for all following para-
meters.

#ddd Character Output of any printable or non-printable character, speci-
fied as a 3-digit decimal value. The allowed value range is
0 up to 255. e.g. the line ending carridge return character
is #013

[...] [format] User defined date and time output, see table below 23.3.4.

a Alteration Shows the alteration in the signal lines or data relating to
the last event. I.e. +TxD -RTS means a rising of the TxD
line and a falling of RTS.

A All line states Shows all signal states and/or alterations in a representi-
ve text format as shown in the EventView. For instance:
-^DCD,^^TxD,^^RxD,^^DSR,-^DTR,^^CTS,^^RTS,-^RI

b Data-Byte Data byte output as 8 bit value. In ASCII mode represen-
ted as 2-digit hexadecimal number with leading zeros, e.g.
’41’ is the character ’A’, ’0A’ the linefeed character.

B Data-Byte The same as ’b’ but as decimal number output in ASCII
mode, for instance: ’65’ means the character ’A’, ’10’ the
linefeed.

d Date/Time Timestamp output representation in the ISO 8601 format
YYYY-MM-DD HH:MM:SS (ASCII mode). Output as 32 bit
value containing the seconds since the Epoch (00:00:00
UTC, January 1, 1970) in binary mode.

D Excel Date Excel date as days from 1.1.1900. Output as 32 bit value
(binary) or decimal number (ASCII)

e Error Transmission error. Errors are outputed as their leading
charcaters in ASCII (’F’rame, ’P’arity’, ’B’reak) or as a 8
bit integer value (0:no error, 1:frame, 2:parity, 3:break) in
binary mode.

292

23.3. FORMATTED OUTPUT WITH MSB_FORMAT

i Info shows all informations in a more human readable form.
Only for testing purpose. Don’t use this parameter with
others.

l Logic-Level Outputs the current logic state of all 8 signal lines. A set
bit correlates with a logic line level of ’1’. The bit order is
equal to the signal lines in the control program. Bit 0 is the
first (left), bit 7 the last (right) signal.
The state information is written as a 8 bit value in binary
mode and as a 2-digit hex number with leading zeros in
ASCII mode, e.g. ’7F’ means all lines except for Signal 8
have a logical ’1’ level.

L Logic-Level The same as ’l’. In ASCII mode the output is written as a
decimal number, e.g. ’255’ means all lines have a logical
’1’ level.

M Milliseconds Time stamp of the event in milli seconds as distance to
0h00 of the current day. The output is either a decimal
number (ASCII) or a 32 bit value (binary).

o dt last event Outputs the time since the last event in seconds as a floa-
ting point number in ASCII or as a double (8 byte) value in
binary mode.

O dt same event Outputs the time since the last same event in seconds as
a floating point number in ASCII or as a double (8 byte)
value in binary mode.

P Position Running event counter starting with the first output. The
output is either a decimal number (ASCII) or a 32 bit value
(binary). The event position starts with zero.

s Data/State Outputs either the data up to 9 bit (event type A/B) or the
line states as a combination of logical and valid state. The
upper 8 bits contains the logical state of each line. See
specifier ’l’ and ’v’ and section 12.4.2. Data or line state
are output as a 4-digit hex number like F12E, in binary a
16 bit value.

S Source Source or direction of the data byte. Port A=1, Port B=2.
A zero means no data event. Outputed either as decimal
number (ASCII) or as 8 bit value (binary).

t event type Output the event type as a character in ASCII mode: A
(data received at port A/channel 1), B (data received at
port B/channel 2), L (logic or valid line state changed) and
as a 8 bit value in binary mode, range [0...2].

T Time stamp Microseconds precise time stamp of the event in relation-
ship to the start of the recording. Output in seconds as
floating point number with 6 digits after the decimal point
(ASCII) or as 8 byte floating point number in double preci-
sion.

293

KAPITEL 23. COMMANDLINE API

u usec part the microseconds fraction of the timestamp. You can
use it to complete the normal date/time in ASCII
with the left microseconds like: -Fd+u results to
2012-04-11 15:57:40+184935. In binary mode the
usec are stored as a 32 bit value.

v Valid-Level Output the current valid state of all 8 signal lines. A set
bit correlates with a valid line level. The bit order is equal
to the signal lines in the control program. Bit 0 is the first
(left), bit 7 the last (right) signal.
The state information is written as a 8 bit value in binary
mode and as a 2-digit hex number with leading zeros in
ASCII mode, e.g. ’7F’ means all lines except for Signal 8
have a valid signal level.

V Valid-Level The same as ’l’. In ASCII mode the output is written as
a decimal number, e.g. ’255’ means all lines have a valid
signal level.

w Data-Word A 9 Bit Data byte is output as a 16 Bit binary value 0 to
511. In ASCII this value is displayed as a 3-digit hexade-
cimal number with leading zeros, e.g. ’105’ or ’0FE’.

W Data-Word Like ’w’, but writes the output in ASCII mode as a decimal
number. For instance: ’261’ means the same as the hex
value ’105’ from above.

x1...8 signal level Output the Tri-State signal level of an individual signal.
The signal number 1...8 correspondences with the num-
bering in the control program. The signal state is output
as -1, 0 or 1 in ASCII and as signed 8 bit value in binary.

23.3.4 User defined date and time
A string enclosed between two square brackets is interpreted as a special date/time
format. With it you can output the timestamps in your very own format, according to
your application. An example:

type modbus-ascii.msblog | msb_format -F"[%d.%m.%Y %H:%M:%S],u#115"

results as:

27.08.2010 09:41:04,303098s
27.08.2010 09:41:04,304127s
27.08.2010 09:41:04,305162s
27.08.2010 09:41:04,306197s
27.08.2010 09:41:04,307226s
27.08.2010 09:41:04,308261s
...

The msb_format tool supports the following user defined date/time format specifiers.
Every parameter must start with a leading %-character. In case of using it in a Windows
batch file you must double each %6. Otherwise the command will throwing an ’Invalid
format parameter’. The reason: The Windows command interpreter uses the % for refe-
rencing the script arguments.
To avoid this, double each % in the msb_format argument. For instance: The example
above:

6This exclusively applies in Windows, not Linux

294

23.3. FORMATTED OUTPUT WITH MSB_FORMAT

type modbus-ascii.msblog | msb_format -F"[%d.%m.%Y %H:%M:%S],u#115"

must be changed to:

type modbus-ascii.msblog | msb_format -F"[%%d.%%m.%%Y %%H:%%M:%%S],u#115"

Please note!

The command shell (in both, Linux and Windows) uses white space characters
(here the space between date and time) as a parameter separator. Therefor you
have to insert the complete format string between two quoting marks.

Parameter Description

%a the abbreviated weekday name

%A the full weekday name

%b the abbreviated month

%B the full month name

%c the preferred date and time representation for the current locale

%d the day of month as a decimal number [01...31]

%e like %d, the day of the month as a decimal number, but a leading
zero is replaced by a space [’ 1’...’31’]

%H the hour as a decimal number, range [00...23]

%I the hour as decimal number, range [00...12]

%j the day of the year as deciaml number, range [001...366]

%m the month as decimal number, range [01...12]

%M the minutes as decimal number, range [00...59]

%p ’am’ or ’pm’ (according to the given time value)

%S the seconds as decimal number, range [00...59]

%T the time in 24-hour notation like %H:%M:%S

%U The week number of the current year as a decimal number, range
[00...53], starting with the first Sunday as the first day of week 01

%w the day of the week as decimal number [0...6], Sunday being 0

%W The week number of the current year as a decimal number, range
[00...53], starting with the first Monday as the first day of week 01

%x The preferred date representation for the current locale without the
time

%X The preferred time representation for the current locale without the
date

%y the year as decimal number without the century [00...99]

%Y the year as decimal number including the century

%Z the time zone, for instance CEST

295

KAPITEL 23. COMMANDLINE API

%% the literal % character

23.3.5 msb_format program parameters
Call the program with:
msb_format [OPTION]...

[OPTION] can contain one ore more of the following program parameters. If no para-
meter is set the default format -Fi is used and the output is written to the standard
output channel.

Parameter Description

-c
--config-file=file

Uses the settings specified in the given config file.

--disable-linefeed Suppress linefeed in ASCII mode.

-F
--format=formatstring

Output format definition, see format table.

-h
--help

Help. Output of all program parameters.

-o file
--output=file

Output file. Default is the standard output (console).

-s list
--signal-names=list

Pass a comma separated list of signal names for use in the
output. For instance:
--signal-names=DCD,RxD,TxD,DSR,DTR,CTS,RTS,RI
names all signals according to the RS232 DCE standard
names.

--signal-rs232-dte Predefined signal list. Names all signals according to RS232
DTE.

--signal-rs232-dte Predefined signal list. Names all signals according to RS232
DCE.

--signal-rs485 Predefined signal list for use with the RS485 analyzer.
Names all signals as like:
--signal-names=CH1,CH2,CH3,CH4,BDIR,BSIG,IO1,IO2

-v
--verbose

Verbose, output of additional Information.

-V
--verbose

Output of the program version.

23.4 Filtering data output with msb_filter
The filter tool will be your first choice when you have to extract a special part, certain
events or a combination of both from a former record (*.msblog).
For example: If you want to process only the transmitted data in a record without already
existing signal events.
msb_filter reads the data from it’s standard input and write the filtered data to the
standard output like each other tool. The program thereby works like a real filter between
the input and output channel. You can specify the kind of data or events which are

296

23.4. FILTERING DATA OUTPUT WITH MSB_FILTER

passed through the filter tool by several filter parameters.

type recordfile.msblog | msb_filter [Filterparameter] ...

Please note that you have to give at least one filter parameter because the tool only
passes the data which were allowed by the program arguments7.
Without any filter parameter the program will block all data flow.

23.4.1 Filter data
The following tool chain filters all data bytes (received at port A and B) from the given file
modbus-ascii.msblog in the directory examples/DataView and stores the result
in the new record file data-only.msblog.

type modbus-ascii.msblog | msb_filter -A -B > data-only.msblog

You can also pass the data of the filter tool directly to the input of the formater tool
msb_format.

type modbus-ascii.msblog | msb_filter -A -B | msb_format

23.4.2 Filter certain signal events
Beside the data you can also extract the recorded signal changes of every signal line.
For instance if you have a record with all line changes but you are only interested in the
transmitted data and the handshake signals RTS/CTS.
The selection of the passed signals is given as a comma separated list and corresponds
with the --log-signals parameter of the msb_record tool.

type modbus-ascii.msblog | msb_filter -A -B --pass-signals=6,7 | msb_format

The example above extracts the signal changes of the lines 6 and 7 (in RS232 connecti-
ons the signals RTS and CTS) additional to the transmitted data and forwards the result
to the output formater.

23.4.3 Filter a given record part
The tool msb_split described in the next section is able to split an existing record in
several smaller record files. But imagine if you only need a ’certain’ part of a record file.
For instance: The first or last 100000 events? Or you want to analyze only the events in
a specific time range.
The filter tool offers you two further parameters to define a specifiy record part:

1 --pass-selection=pos1,pos2

pos1 and pos2 specifies the event position (number) of the first and last event which are
passed through the filter tool. For example:
type modbus-ascii.msblog | msb_filter --pass-all --pass-selection=300,310

2 --pass-time=time1,time2

time1 and time2 specifies the start and end of a record part in seconds. The time is
input as a floating point number with the usual micro second precision.
type modbus-ascii.msblog | msb_filter --pass-all --pass-time=3.04,3.05

A Non-blocking filter

The filter tool ’blocks’ all data by default. In case of a range selection you have
to pass all allowed events as parameters. Or you disable (switch off) the filtering
completely with the parameter --pass-all.

7Linux user use the cat command instead of the type command.

297

KAPITEL 23. COMMANDLINE API

23.4.4 msb_filter program parameter
Call the program with:

msb_filter [OPTION]...

[OPTION] can contain one ore more of the following program parameters. You have to
give at least one filter rule. Without any rule the program doesn’t forward any data.

Parameter Description

-a
--pass-all

passes all data and signal events.

-A
--pass-dataA

passes all data received at port A (MSB-RS232) respec-
tively Channel 1 (MSB-RS485).

-B
--pass-dataB

passes all data received at port B (MSB-RS232) respec-
tively Channel 2 (MSB-RS485).

-c
--config-file=file

Uses the settings specified in the given config file.

-h
--help

Help. Output of all program parameters.

--pass-all-signals passes the line change events of all lines.

--pass-signals=list passes the line change events of the given lines as
comma separated list. The lines are numbered from
1 to 8 as they are displayed in the analyzer con-
trol program (counted from left to right). For instance:
--pass-signals=2,3,6,7.

-s
--pass-selection=list

pass all events in the given range defined as
comma separated event number from first to last.
The following example passes all recorded events
with the numbers 100 to 200: -s 100,200 or
--pass-selection=100,200.

-t
--pass-time=list

pass all events in the given time range in seconds as
comma separated list with first time, last time. For in-
stance: --pass-time=1.257,10.231 passes all re-
corded events in the time range 1.257s until 10.231s.

-v
--verbose

Verbose, output of additional information.

-V
--verbose

Output of the program version.

23.5 Split records with msb_split
When recording data with the MSB-RS232 analyzer large data quantities may arise.
This happens if the searched error does not occur for days and recording in Fifo mode
is not wanted for any reason.
msb_split reads a record file from the standard input and splits it into smaller record
files. You can specify the size and name of the files by use of program parameters.

298

23.5. SPLIT RECORDS WITH MSB_SPLIT

23.5.1 Split existing record files
You have a GByte large record file and want to split it into handy parts, especially as
you are interested in the last events of the recording only.
Open a console window (Windows command window) and change to the directory which
contains your record file.
enter the following command:

type record.msblog | msb_split -n1000000

With type the record file is sent to the standard output and fed into the standard input
of the msb_split program by the pipe operator ’|’.

Linux users use the cat command instead of the type program.

Depending on the size of the output file record.msblog msb_split divides them into
multiple 1000000 ∗ 24+3072 Byte files Each file (with exception of the last one) contains
1,000,000 events, each 24 bytes long plus a header of 3072 bytes. In the current direc-
tory a number of new msblog files are generated in the form:

xaa.msblog, xab.msblog, xac.mbslog, ...

You can examine every file individually with the MSB-RS232 analyzer software by loa-
ding them into the program or double click onto it.
By default the program enumerates all files alphabetically with a preceding ’x’. You can
change this behavior by adding a respective parameter. For a 3-digit, numerical enume-
ration use the parameters -a and -d (see 23.6.9).
type record.msblog | msb_split -a3 -d -n1000000

As result you get: x000.msblog, x001.msblog...

You can substitute the preceding ’x’ for your prefix by appending it as last parameter to
the command line.

type record.msblog | msb_split -a3 -d -n1000000 Test

The resulting files now begin with: Test000.msblog, Test001.msblog, ...

This kind of enumeration does not mention the important time range of the single files.
Alternative to the alphabetical or numerical naming you can also chose date and time
of the first event for the name of the split files. The parameter is -D.

type record.msblog | msb_split -D -n1000000 Projekt-

The generated files have the following meaning:

Projekt-20110510_15h53m24s.msblog
Projekt-20110510_15h58m31s.msblog
Projekt-20110510_16h02m10s.msblog
...

If you don’t like any prefix, just append an ’empty’ string as the last parameter (PREFIX):

type record.msblog | msb_split -D -n1000000 ""

With it you will get:

299

KAPITEL 23. COMMANDLINE API

20110510_15h53m24s.msblog
20110510_15h58m31s.msblog
20110510_16h02m10s.msblog
...

23.5.2 Splitting the current recording from msb_record
As the msb_split program reads its data from the standard input you can use the out-
put of the msb_record tool as data source to directly divide the recorded events into
small portions. This may make sense if you plan long and large recordings to examine
them later.

msb_record -b115200 -p8N1 | msb_split -a4 -d -n1000000

23.5.3 Keep only a given number of records
Let’s say you want to get a record every hour but only want to keep the last 10 records
to save disc space. This is a typical scenario when you search an error which occurs
extremely rare.
By default the msb_split tool keeps all generated split files. The number of files incre-
ases as long as the record runs.
With the parameter --keep-max-files=N you can limit the generated files to a given
number. The following example creates a record every hour but keeps only the last ten:

msb_record -b115200 -p8N1 | msb_split -D -t3600 --keep-max-files=10

When the eleventh record starts, the program removes the very first automatically. This
happens again with the beginning of the twelfth record. msb_split then removes the
record of the second hour. And so on...

23.5.4 msb_split Program Parameter
Call the program with: msb_split [OPTION]... [PREFIX]

[OPTION] can contain one ore more of the following program parameters. If no pa-
rameter is set the default parameters are used. [PREFIX] is an optional and freely
selectable character string which precedes the file name. The default is the character
’x’.
All parameters can be used in the short form (a character with a leading ’-’, first row) or
in the long form (second row).

Parameter Desription

-a length,
--suffix-length=length

Number of usable characters for the enumerating suffix.
Default is 2 characters.

-h,
--help

Output of all program parameters.

-c
--config-file=file

Uses the settings specified in the given config file.

-d,
--numeric-suffix

The files are names numerically, the default is alphabeti-
cally.

--dir=directory Use the given directory for the output (split) files.

300

23.6. TRIGGER A RECORD WITH MSB_TRIGGER

-D,
--date-time-suffix

The files names are extended with the date and
time of the first occurred event in the format
YYYYMMDD_HHhMMmSSs.

-k,
--keep-max-files=N

Keep only the last recorded files of the given number N
and automatically remove the older (earlier) split record
files.

-n,
--number=quantity

Quantity of the events per file. Each event occupies 24
bytes.

-v,
--verbose

Output of additional information.

-V,
--version

Output of the program version.

23.6 Trigger a record with msb_trigger
Long-term records in conjunction with the command line tools often serves the purpose
to find a rarely occuring event when the communication goes wrong. Such an event can
be a suddenly failing device only indicated by an invalid telegram or a wrong telegram
content.
It is obvious that such an event is not easily detectable by simply looking for a given
data sequence. Here we have to take into account the used protocol. Just consider a
bus participant in a Modbus communication which responses unexpectedly with an er-
ror (and only once in hours or days). Although the error is a two byte sequence (address
byte, followed by the error function number), that sequence may occur more than once
in other telegram payloads. The trigger condition is only true, when this search pattern
is identical with the first two bytes of a (Modbus RTU) telegram. And this means, the
trigger condition must be able to detect the start (and end) of every telegram.
Since there are a lot of different protocols out in the world, the msb_trigger tool uses
the same approach as the ProtocolView and provides an integrated Lua script inter-
preter to let you formulate not only protocol dependent trigger conditions but also very
special conditions you otherwise have no chance to find. The msb_trigger program
follows the rules of all other command line tools. You can use it to trigger the output of
an active record with:

msb_record | msb_trigger script.lua > record.msblog

Or you can output a special part (specified by the trigger condition) of an already made
record:

type record.msblog | msb_trigger script.lua > result.msblog

(Linux user use the cat command instead of type).

Please note!
To simplify the command line we forego any additional msb_record program parame-
ters.
You can also output the result of the msb_trigger to other tools like the formater
(msb_format) or splitter (msb_split).
The file script.lua specifies the trigger condition. It works similar to the split()
function in the ProtocolView and we will discuss it in detail in the following.

301

KAPITEL 23. COMMANDLINE API

23.6.1 Edit a trigger script
You can create and/or edit a trigger script with every editor but we recommend to use
the script editor provided by the analyzer software.
The analyzer editor not only offers a code frame work for trigger scripts, it also let you
test little Lua code snippets in the editor buffer itself.
To open the editor, first start the analyzer software and select the ’Script Editor’ in the
view menu of the control program.
In the editor click the ’New file’ icon in the toolbar or press Ctrl + N and select ’Trigger’
in the appearing script wizard. There are a lot of examples too. You can open them by
click on the ’Open file’ icon or via Ctrl + O . All trigger scripts stay in the ’Trigger’
folder.

23.6.2 Define a trigger condition
By default the msb_trigger tool forwards all data events read from the standard input
(provided by the msb_record or an existing record) to the Lua function trigger.

1 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
2 −− r e t u r n t rue i f the t r i g g e r c on d i t i o n occurred
3 end

The trigger function is called separately for each data direction, so you don’t have to
worry about the data belonging.
Beside the raw data (9-bit) the program passes the time distance to the former data
byte, the direction and if a change (alternation) in the direction has occurred. Below is
the list of all parameters:

1 data→ the current data byte (up to 9 bits)
2 interval→ (short intval), the time distance to the former byte in seconds (with microse-

cond resolution)
3 direction → (short dir), the direction or source of the current data event. 1=Data A,

2=Data B.
4 alternation→ (short alter), true when the direction has changed

You can rename the parameter for your own purpose but don’t change the order of the
parameter! It’s also allowed to skip unused parameter from the right.
Let’s take a look for a simple example. The code below triggers when in a Modbus ASCII
transmission a telegram end sequence was incomplete and instead of CR LF (carriage
return, line feed) only a CR occurred.

1 las tBy te=−1
2 function t r i g g e r (data)
3 i f l a s tBy te == 0x0D and data ~= 0x0A then
4 −− t r i g g e r
5 return true
6 end
7 las tBy te = data
8 return fa lse
9 end

In addition to the passed parameters above exists a global event object which covers
the actual event and provides additional information like the time stamp or the current
signal levels.
You can access these information by using the event module as described in the Pro-
tocolView chapter 13.8.3. The global event becomes especially useful if you need to
trigger not for a data but a signal line condition. To give you an idea about this, here we
trigger for a falling edge of the DTR signal.

1 −− the DTR s i g n a l number
2 DTR = 4
3 −− here we s to re the l a s t DTR l i n e s ta te

302

23.6. TRIGGER A RECORD WITH MSB_TRIGGER

4 l a s t _ d t r = −1
5 function t r i g g e r ()
6 local d t r = event . l e v e l (DTR)
7 −− check f o r a f a l l i n g edge
8 i f d t r == −1 and l a s t _ d t r == 1 then
9 −− t r i g g e r

10 return true
11 end
12 l a s t _ d t r = d t r
13 return fa lse
14 end

Since msb_trigger by default only processes data events, you have to switch the
event type read by the tool from data to signal.

msb_record | msb_trigger --trigger-source=signal script.lua > record.msblog

23.6.3 Conditional start of a record with pre and post-trigger
As said before - this is the main purpose of the msb_trigger tool. Instead of examine
a huge amount of recorded data for a given event you better pipe all data logged by the
analyzer to the trigger program.
msb_trigger allows you to specify a number of pre- and post-trigger events (see sec-
tion program parameters 23.6.9). This is especially important if you want to see the
transmitted data before an event occurred and to limit the recorded data after the trig-
ger happened. Lets say you need to know the communication around a Modbus RTU
checksum failure.
The trigger script below splits the incoming data stream into single Modbus RTU te-
legrams by checking the idle time between the received bytes in line 4. Modbus RTU
specifies an idle time (or transmission pause) of 3.5 byte for a telegram delimiter, which
means the time for sending 3.5 byte. In case of a positive idle time the global variable
seq (line 2) represents the complete telegram. The Modbus RTU protocol uses a 2 byte
CRC16 checksum as the two last bytes of the telegram. The script first checks for a te-
legram length of at least to bytes in line 7, then compares the received checksum bytes
with the calculated checksum. It returns true (trigger condition detected) if the compari-
son doesn’t match.

1 −− represents the ac tua l te legram
2 seq = " "
3 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
4 i f i n t v a l > t ransmiss ion . bytepause (3.5) then
5 −− seq represents the cu r ren t telegram , t e s t checksum
6 −− read 16 b i t ckecksum of cu r ren t te legram
7 i f #seq >= 2 then
8 loca l cks_ is = seq : byte (−1) * 256 + seq : byte (−2)
9 loca l cks_must = checksum . crc16_modbus (seq : sub(1 ,−3))

10 i f cks_ is ~= cks_must then
11 return true
12 end
13 end
14 −− s t a r t a new telegram sequence
15 seq = " "
16 end
17 −− add the cu r ren t data byte to the ac tua l te legram sequence
18 seq = seq . . s t r i n g . char (data)
19 return fa lse ;
20 end

303

KAPITEL 23. COMMANDLINE API

You will find the trigger script in the examples/API folder.
Modbus RTU telegrams are limited to a maximum length of 256 byte. We want to re-
cord at least 10 telegrams before and after the reception of the telegram with the invalid
checksum, which gives us a pre and post-trigger count of 2560.

msb_record | msb_trigger --pre-triger=2560 ←↩
--post-trigger=2560 script.lua > record.msblog

23.6.4 Conditional output of an existing record file
msb_trigger not only serves as a trigger of an active record. With it you can also
scan an already existing record for a given event and produce a new record for a later
analysis with the analyzer software.
The program call of the msb_trigger is identical. You just replace the tool msb_record
as the data source with the output of the given record file. For instance:
type record.msblog for Windows user or cat record.msblog for users running
Linux. In case of the former example (under Windows):

type modbus-rtu.msblog | msb_trigger --pre-triger=2560 ←↩
--post-trigger=2560 script.lua > record.msblog

23.6.5 Scan a record file for certain events
Imagine you just want to know if there are any checksum errors (or - of course - other
transmission or telegram issues). You don’t like to produce a new record file with the gi-
ven event. An output with the information which telegrams (time and/or number) cause
the wrong checksum should be satisfied.
The msb_trigger tool provides you with a special parameter --debug which not only
helps debugging your trigger script. It also serves as a switch to suppress the output of
the recorded events when a trigger condition occurs. The latter is important to avoid a
mixture of printed information and binary event sequences.
Since the trigger conditions are coded in Lua, it is very easy to output any information
directly from within the script by the Lua print function.
Using our Modbus RTU checksum example again, we will now looking for telegrams
with an invalid checksum and printing the time when the telegram occurred together
with the transmitted (wrong) and expected (valid) CRC16.

1 −− a Lua s t r i n g represen t ing the l a s t rece ived data o f one channel
2 seq = " "
3 −− conta ins the t ime stamp of the f i r s t byte o f the cu r ren t te legram
4 t s = 0
5
6 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
7 i f a l t e r or i n t v a l > t ransmiss ion . bytepause (3.5) then
8 −− seq represents the cu r ren t telegram , t e s t checksum
9 −− read 16 b i t ckecksum of cu r ren t te legram

10 i f #seq >= 2 then
11 loca l cks_ is = seq : byte (−1) * 256 + seq : byte (−2)
12 loca l cks_must = checksum . crc16_modbus (seq : sub(1 ,−3))
13 i f cks_ is ~= cks_must then
14 p r i n t (s t r i n g . format ("%6 f \ t i s :%04X, must:%04X" ,
15 ts , cks_is , cks_must))
16 end
17 end
18 −− s t a r t a new telegram sequence
19 seq = " "
20 −− s to re the telegram time

304

23.6. TRIGGER A RECORD WITH MSB_TRIGGER

21 t s = event . t ime ()
22 end
23 −− add the cu r ren t data byte to the ac tua l te legram sequence
24 seq = seq . . s t r i n g . char (data)
25 −− don ’ t stop pars ing
26 return fa lse
27 end

Please note! You don’t want to stop the evaluation of the piped record by the very first
trigger condition. Therefore the trigger function MUST return false (line 26). Otherwise
the msb_trigger tool exists without any output.
You can test the script above by yourself. Just open a shell (Linux) or command window
(Windows) in the examples/API folder of the installation directory and input:

type Modbus-RTU-wrong-checksum.msblog | msb_trigger ←↩
--debug scan-modbus-wrong-checksum.lua

This will give you the following output:

727.232679 is:982E, must:972E
904.113558 is:50A5, must:50A6
949.962685 is:528C, must:508C

There are three telegrams with an invalid checksum in the record at the displayed time.
The transmitted and wrong CRC16 checksum is output as ’is’, the expected (calculated)
checksum as ’must’. To verify, just load the record in your analyzer software.

23.6.6 One script for scan and trigger
Up to here you have learned the following applications:

1 How to trigger an active recording
2 How to extract the events around a trigger condition
3 How to scan a record for certain information

Especially the latter application uses the built-in debug feature of the msb_trigger
tool. Unfortunately this code is not compatible when triggering an active record and so
far you have to write two scripts: One for trigger or extract a recording and a different
one to scan a record for special details.
Even if the trigger scripts are seldom very complicated it is nevertheless bothering to
work with two kinds of code.

In this section we will conclude the description of the msb_trigger program by sho-
wing you how to bypass that distinction.

Just remember the purpose between a trigger script and a script which has to printout
certain information. A script intended for trigger a record (or extract part of a record)
always has to return true in the trigger function. And it never should output anything,
since this would mix-up the resulting record file.
In contrast consider a script scanning a record e.g. for invalid checksums. As described
earlier, the result of the trigger function must be false and you can use the Lua print
function to output valued information.
In a nutshell, trigger scripts create new record files whereas scan scripts produce any-
thing but NO valid analyzer records!

To solve this contradiction we need to know when a script is called for triggering a record
or called with the --debug argument indicating a scanning purpose.
Luckily the msb_trigger tool defines the internal global variable DEBUG which reflects
the --debug argument. With it it is easy to cover code meant either for trigger or scan.
The script below again pick-ups our Modbus RTU example.

305

KAPITEL 23. COMMANDLINE API

1 −− a Lua s t r i n g represen t ing the l a s t rece ived data o f one channel
2 seq = " "
3 −− conta ins the t ime stamp of the f i r s t byte o f the cu r ren t te legram
4 t s = 0
5 −− the t r i g g e r f u n c t i o n
6 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
7 i f i n t v a l > t ransmiss ion . bytepause (3.5) then
8 −− seq represents the cu r ren t telegram , t e s t checksum
9 −− read 16 b i t ckecksum of cu r ren t te legram

10 i f #seq >= 2 then
11 loca l cks_ is = seq : byte (−1) * 256 + seq : byte (−2)
12 loca l cks_must = checksum . crc16_modbus (seq : sub(1 ,−3))
13 i f cks_ is ~= cks_must then
14 i f DEBUG then
15 p r i n t (s t r i n g . format ("%6 f \ t i s :%04X, must:%04X" ,
16 ts , cks_is , cks_must))
17 else
18 return true
19 end
20 end
21 end
22 −− s t a r t a new telegram sequence
23 seq = " "
24 −− s to re the telegram time
25 t s = event . t ime ()
26 end
27 −− add the cu r ren t data byte to the ac tua l te legram sequence
28 seq = seq . . s t r i n g . char (data)
29 return fa lse ;
30 end

The important line is 14. Here we use the DEBUG variable to check if the script is called
with the --debug parameter indicating a scan. If so, we output the time of the telegram
with the invalid checksum as well as the expected and detected CRC16 checksum va-
lues (line 15). The code proceeds and returns false in line 29.
Otherwise we just return true for a detected trigger condition in line 18.
You will find this combined script as like the other examples in the examples/API
folder.

23.6.7 Multiple triggering

You can force the msb_trigger tool to continue parsing the input data by passing
the parameter --multi-trigger. Given this parameter the trigger tool will output the
specified number of pre- and post-trigger events and then proceeds reading the data for
further trigger conditions. The resulting record file contains several trigger fragments,
means: You will get one record with different blocks of pre- and post-trigger events
separated by a gap of an undefined time (the time between the trigger condition less
the specified pre- and post-trigger events).
The msb_trigger tool marks this ’gaps’ with special gap events. In the DataView the
gaps are displayed as two consecutive yellow fields as shown in the picture below.

306

23.6. TRIGGER A RECORD WITH MSB_TRIGGER

The black framed fields indicate the trigger condition. Here the data sequences forming
the word ’hello’. (We added the black frames for a better explanation, they don’t exist in
the record). But what you find in a record created by multiple trigger conditions are the
yellow ’gaps’. These gaps show you, where the first pre-trigger event starts and where
the last post-trigger event stops. All data bytes or events (if you record the line states
too) between the yellow gaps belong together. You can save a certain section as a new
record with the help of the EventView.

A typical call of the msb_trigger for multiple triggering looks like:
msb_record | msb_trigger --pre-trigger=100 --post-trigger=100←↩
--multiple-trigger multitrigger.lua > test.msblog

Pre- and post-trigger events are specified as 100. The trigger condition is - as usual -
passed as a Lua script, here multitrigger.lua.
One last word to the trigger script itself.
Unlike a script intended to trigger only once, you must take care to ’reset’ your trigger
algorithm in your script for multiple triggers. The following example triggers every time it
detects the data sequence ’hello’ on channel 1 (A), or ’world’ on channel 2 (B).

1 −− a Lua s t r i n g represen t ing the l a s t rece ived data o f one channel
2 seq = " "
3 −− the t r i g g e r f u n c t i o n
4 function t r i g g e r (data , i n t v a l , d i r , a l t e r)
5 −− channel A uses " h e l l o " , channel B " wor ld "
6 local pa t t e rn = { " h e l l o " , " wor ld " }
7 −− add the data to the s tored s t r i n g / sequence
8 seq = seq . . s t r i n g . char (data)
9 −− l i m i t the s ize f o r a b e t t e r search performance

10 i f #seq > 2048 then seq = seq : sub (−32, −1) end
11 −− check i f the a l ready rece ived bytes conta in the given pa t t e rn
12 i f seq : f i n d (pa t t e rn [d i r]) then
13 −− MATCHED!
14 −− NOTE! We must c l ea r the sequence b u f f e r f o r the next mu l t i−

t r i g g e r !
15 seq = " "
16 −− t r i g g e r i s t r ue
17 return true
18 else
19 return fa lse
20 end
21 end

The script adds every passed data byte to it’s internal string buffer seq in line 8. Then it
checks the buffer for the search pattern (’hello’ or ’world’, depending on the data channel
or direction) in line 12. If seq contains the searched pattern or word, the trigger condition

307

KAPITEL 23. COMMANDLINE API

is true.
If you are not interested in further trigger conditions, you can return true and that’s all.
But consider if the script is called again with the next incoming data byte. The internal
string sequence seq still contains the data of the former trigger conditions and the script
will again return true even though the next sequence ’hello’ or ’world’ didn’t arrive.
To avoid this, you must reset the trigger mechanism. Here: To clear the internal buffer
for the pattern search. We do this in line 15.
We recommend to reset you trigger script always properly, independent of your intention
to use it for a single or multiple triggering.

23.6.8 Provided Lua modules
The following Lua extensions are supported by the msb_trigger tool:

base16 module : Encoding and decoding functions for base16 sequences (i.e. used in
Modbus ASCII and Intel SRecord). See Lua Extensions, section 18.2.1.

bit32 module : OBSOLETE! With the integration of Lua version 5.3 the bit32 module
is not longer needed and will be removed in the next future. Please use the native Lua
bitwise operators instead.

checksum module : Contains checksum algorithms for Modbus RTU (CRC16), Mod-
bus ASCII (LRC), BACNet (CRC8 and CRC16), DNP3 and CRC16 CCITT (Kermit). See
Lua Extensions, section 18.2.5.

event module : The event module is only available in the trigger function and gives
you access to additional information of the current data event. See ProtocolView, secti-
on13.8.3.

transmission module : Returns information about the current baudrate, data bits, pa-
rity and stopbits. See Lua Extension, section 18.2.9.

shared module : As like the ProtocolView also the trigger tool uses two separated Lua
interpreters for both data directions. The reasons for this implementation detail and how
to sometimes have to share variables between them are described in the ProtocolView
chapter, section 13.8.6.

You can use the listed modules above in an identical way as described in the according
examples of the ProtocolView chapter. All modules can be called from any location in
your trigger script, except for the event module, which is only accessible from within
the trigger function.

23.6.9 msb_trigger Program Parameter
Call the program with: msb_trigger [OPTION]... trigger-script

[OPTION] can contain one ore more of the following program parameters. If no parame-
ter is set the default parameters are used. trigger-script is a Lua script specifying
the trigger condition.
Some parameters can be used in the short form (a character with a leading ’-’, first row)
or in the long form (second row).

Parameter Desription

-c
--config-file=file

Uses the settings specified in the given config file.

-h,
--help

Output of all program parameters.

--debug Enables the debug mode.

308

23.7. ONE CONFIG FILE FOR ALL

--multi-trigger The msb_trigger tool does not stop after the first
triggering but continues to parse the incoming data for
further trigger conditions.

--pass-through By-pass all trigger conditions. The trigger script is exe-
cuted but the program outputs all passed events inde-
pendent of the script result. This is intended for scripts
which don’t want to change a record but collecting infor-
mation in a file specified in the script itself. E.g. create
a list where telegrams with invalid checksum are find in
the passed record.

--pre-trigger=events Specifies the number of events BEFORE the trigger
point which are output when the trigger condition oc-
curs. The default is 4096 events (data and/or line state
events).

--post-trigger=events Defines the number of events output AFTER the trigger
condition occurred. The default is infinity, means that
the output runs until the program is stopped.

--trigger-source=source The kind of events passed through the trigger script.
Default is data but you can also trigger on certain li-
ne state conditions by passing signal as the trigger
source.

-v,
--verbose

Output of additional information.

-V,
--version

Output of the program version.

23.7 One config file for all
As yet we either used the default settings of the several tools or we handled our spe-
cifications to the respective tools via program parameters. Depending on the count of
arguments this approach will lead to complex and - perhaps - buggy command lines.

Therefore all tools are also manageable by one configuration file which is given to the
first msb_record program as a parameter. msb_record ensures that all further pro-
grams in the command (tool) chain receive the settings in this file8.

A configuration file isn’t part of the analyzer software but you can always create a new
one just by the following command:

msb_record -C

respectively

msb_record --create-config-file

As a result the file msb_tools.config is written in the current directory. Open the
file with your favorite editor (Windows user can use notepad, Linux users may choose
between gedit, kate, or - of course vi, emacs, ...).
The configuration file is well documented. You can simply adapt the parameters to your

8This only works of course for the analyzer tools.

309

KAPITEL 23. COMMANDLINE API

application and save the file under a new name. The latter makes sense because ano-
ther call of msb_record -C overwrites the file without a warning.

You can - of course - create several individual configuration files, one for each applicati-
on. File name and file extension are of no importance.
As soon as you specify a configuration file to the msb_record program, all further tools
in the command chain will take the settings in that file into account. For example:

msb_record -c meine-config-datei | msb_format

respectively

msb_record --config-file meine-config-datei | msb_format

Perhaps you are wondering about all the examples above which were using the output
of a record file via type or cat as data source instead of the msb_record tool?

In this case you can specify the configuration file for each tool individually. Each analyzer
tool understands the parameter --config-file or the simple variant -c. You do not
need to change the configuration file. Just call the relating tool with the required file.

type examples\DataView\9bit.msblog | msb_format --config-file datei

310

A
ASCII character table

ASCII (American Standard Code for Information Interchange) is
a form for the character coding, which, coming from teletype
machines, now is established as the standard code for character
representation.

The first 32 characters of the ASCII code (hex 00 to 1F) are non printable signs, reser-
ved for control purposes. The main control characters are line feed or carriage return.
They are used with devices which need the ASCII code for control purposes as printer
or terminals. Their definiton is caused for historic reasons.

Code hex 20 is the blank and hex 7F is a special character which is used for deleting.

Code ...0 ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ...A ...B ...C ...D ...E ...F

0... NUL SOH STX ETX EOT ENQ ACK BEK BS HT LF VT FF CR SO SI

1... DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2... SP ! " # $ % & ’ () * + , - . /

3... 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4... @ A B C D E F G H I J K L M N O

5... P Q R S T U V W X Y Z [\] ∧ _

6... ‘ a b c d e f g h i j k l m n o

7... p q r s t u v w x y z { | } ∼ DEL

The upper table regards only 7 bits per byte, the first 128 characters. Extentions of
the ASCII code use the next 128 characters for national language codings or graphical
signs. They are very different in usage. So we will limit the description to the standard 7
bit version.

311

ANHANG A. ASCII CHARACTER TABLE

312

B
Baudrate measuring

The MSB-RS232 analyzer allows the setting and measuring of any
baudrate in the wide range from 1 Baud up to 1 MBaud with the
unique precision better than 0.1%

The measuring is performed eight times per second, thereby measuring and averaging
the width of singular 0 or 1 bits. The more bits are available in the measuring frame of
125 ms the more precise the measuring becomes. A higher data quantity will lead to
more precise and stable measuring values.
The analyzer allows three kinds of baudrate measuring.

1 Automodus (Data A + B)

2 TxD at input A (Data A)

3 RxD at input B (Data B)

In the auto mode either Data A (TXD) or Data B (RXD) is used for measuring, depending
on which channel delivers the first data bit at the start of a 125 ms measuring frame.
Therefore the measured baudrate can vary if both channels use different clock genera-
tors with slightly different baudrates.
This mode is appropriate especially to detect different baudrates on the send and recei-
ve line.

To measure the baudrate of a certain channel the input must be explicitly set. This is
done in the settings dialog of the controll program.

The status window shows 2 baudrates, the set and the measured one. The latter with
its percental deviation to the set rate. Deviations over 50% are indicated by Out!.

dBaud = 100 ∗ Baudmete−Baudset

Baudset

A negative value indicates a lower baudrate, positive values indicates a higher baudrate
(than the set one). Many bit errors can be explained from incorrect generated baudrates.
The following can be taken as a rough guide value:
Deviations of a maximum of ±3% can be accepted and compensated, higher deviations
should be avoided.

Baudrate tolerance
Avoid more than 3% deviation in the baudrate generation. This will result in bit errors.

313

ANHANG B. BAUDRATE MEASURING

Because of insufficient slew rates of the EIA-232 sender of a examined transmission
line the measuring value can be to high for high transmission rates. This could also be a
hint, that the EIA-232 drivers are not correct for the used baud rate when the baud rate
is higher than allowed baudrate for the EIA-232 driver.

314

C
Colors

The MSB-RS232 analyzer software allows you to enter own color
definitions at different places. A selection of predefined colors
can be found here.

The input of color values can be done either in form of a color name (the following tables
show an overview of the pre-defined color names) or by entering a RGB (red green blue)
value as a hexadecimal number.
Please note, that the names are generally in english, even if you use a German software
version. Some colors consist of compound words as ’indian red’. The blank between is
part of the name and has to be entered explicitely.
In the following list you find besides the color names also the RGB value, which can be
entered alternatively. RGB values can be entered in short or in long form. The number
of digits (3 or 6) determine the used format.

C.1 RGB short form
The short form #RGB reduces each color part to a value between 0 and 15 decimal
(0 to F hexadecimal) where R,B,G is represented by this value 0 to F. That means that
each part can be defined in steps of 1/15 of 100%. For instance red is #F00 and white
is #FFF.
For each part is valid that for 0 it is not contained and for F it is fully contained in the
composite color. In the short form 16 x 16 x 16 = 4096 colors are possible.

C.2 RGB long form
The long form #RRGGBB extends the value range for the single color parts from 16 to
256, which simply is a higher resolution for each color. The resulting color range is 256
x 256 x 256 = 16777216 possible colors.

C.3 Predefined color names
The predefined color names are a selection from a list of standard colors used in web
site displays. Besides the extended colors an input of ’green’ should be much more
intuitive than #0F0 of #00FF00. The basic colors like ’black’, ’white’, ’red’ ... are easy to
memorize.

315

ANHANG C. COLORS

C.3.1 Grey colors

Name/Value Color Name/Value Color

black
#000000

dim grey
#696969

dark grey
#a9a9a9

grey
#bebebe

light grey
#d3d3d3

white
#fffff

C.3.2 Basic colors

Name/Value Color Name/Value Color

blue
#0000ff

green
#00ff00

red
#ff0000

cyan
#00ffff

magenta
#ff00ff

yellow
#ffff00

C.3.3 Extended colors

Name/Value Color Name/Value Color

medium spring green
#7fff00

forest green
#228b22

lime green
#32cd32

dark green
#006400

aquamarine
#70db93

spring green
#00ff7f

medium aquamarine
#66cdaa

sea green
#238e6b

medium turquoise
#70dbdb

dark turquoise
#00ced1

steel blue
#236b8e

sky blue
#3299cc

slate blue
#007fff

light steel blue
#b0c4de

cornflower blue
#6495ed

navy
#23238e

medium blue
#0000cd

dark slate blue
#483d8b

316

C.3. PREDEFINED COLOR NAMES

Name/Value Color Name/Value Color

medium orchid
#9370db

medium slate blue
#7f00ff

blue violet
#8a2be2

dark orchid
#9932cc

purple
#b000ff

orchid
#db70db

violet red
#cc3299

orange red
#ff007f

maroon
#b03060

salmon
#6f4242

khaki
#f0e68c

wheat
#d8d8bf

medium goldenrod
#eaeaad

pale green
#8fbc8f

medium sea green
#426f42

medium violet red
#db7093

turquoise
#adeaea

cadet blue
#5f9ea0

light blue
#add8e6

midnight blue
#2f2f4f

pink
#bc8fea

thistle
#d8bfd8

plum
#eaadea

violet
#4f2f4f

firebrick
#8a2222

brown
#a52a2a

orange
#cc3232

indian red
#cd5c5c

coral
#ff7f50

tan
#db9370

sienna
#8e6b23

gold
#ffd700

medium forest green
#6b8e23

yellow green
#99cc32

dark olive green
#556b2f

green yellow
#adff2f

317

ANHANG C. COLORS

318

D
Uninterruptable analysis with

W232-Cable

By breaking the interface lines and feeding them through a gate
array the MSB-RS232 analyzer offers special features like the switch
option (virtual breakout box). But this also means that the
connection is keeped only as long as the analyzer remained in
the connection and is supplied with power.

The W232 cable provides a simple solution to plug and unplug
the analyzer in a RS232 link without breaking the connection.

The W232-Cable directly connects the examined devices. At the same time all signals
are tapped and distributed to the MSB-RS232 ports through two sub-D connectors.
Thus the datastream is not fed through the analyzer but examined in parallel. Since the
cable is standard 1:1 connected it can also be used for serial RS232 analyzer connec-
tion.

In operation without analyzer the open cable connectors A, B can be plugged into each
other to secure the contacs.

Advantages
The W232-Cable can permanently remain in operation while the analyzer only spo-
radically has to be connected or activated for logging or error diagnostics. Therefore
interrupting or stopping the transmission is not necessary. This is especially important
if the examined connection must never be opened for security reasons.

Disadvantages
The switching capability (Switch Option) of the analyzer can be used only in a limited
way since the outputs of the analyzer are not connected.
Also the RS232 transmitters are loaded with 2 RS232 receivers in parallel, which usually
is without any problems.

319

ANHANG D. UNINTERRUPTABLE ANALYSIS WITH W232-CABLE

320

E
Windows Trouble-Shooting

This chapter gives you some hints in case the analyzer device is
not detected by the software or does not communicate properly
with it afterwards. If you are running Linux, see the according
chapter Linux Trouble-Shooting.

If a problem arises, first separate your MSB-RS232 analyzer from any RS232 bus and
disconnect it from the PC. Then check:

1 Is the analyzer got hot?

2 Shows the analyzer any signs of damage?

If you can deny both questions following the instructions in the table below.
Should the problem persist, there may be a malfunction. In this case or if your analyzer
shows other signs of damage please contact IFTOOLS and hold ready the serial num-
ber of your device. The number sticks on the bottom of the housing. The best way to
reach us is via email at support@iftools.com.

E.1 Check analyzer connection
The following tests are intended to check the connectivity of your analyzer with your PC.
This covers the correct driver installation and the proper USB function of the analyzer
device.

Reconnect your MSB-RS232 with your PC but leave the bus
ports open!

Symptom Cause Countermeasure

Device LEDs do not light up No installed driver Install driver, see E.3

Broken USB cable or USB
port

Exchange the USB cable,
use a different USB port/hub

Defective analyzer Exchange device

Analyzer is not detected
(Program cannot find device)

USB enumeration failure Pass analyser S/N to
program start, see E.4

Wrong driver or driver
mismatch

Reinstall driver, see E.3

Driver conflict caused by
other USB device

Check device detection log,
see E.5

321

mailto:support@iftools.com?subject=Analyzer failure

ANHANG E. WINDOWS TROUBLE-SHOOTING

Firmware transmission fails Not reliable USB cable Exchange USB cable

Transmission error Reduce transmission
speed/timeout, see E.4

Defective analyzer Exchange device

All LEDs flash red after
firmware transfer

EEPROM checksum error Contact IFTOOLS, see E.8

A correctly connected and functional MSB-RS232 (firmware loaded successfully) is in-
dicated by flashing both red LEDs alternately.

E.2 Check analyzer bus connections
As soon as you connect your analyzer with a bus system (either a small test setup or
a whole industrial field-bus) your analyzer becomes part of a greater system. This may
include the flow of compensatory currents though your analyzer or voltage surges on
the data lines and may affect its proper working, even can damage the analyzer.
So please make sure that you made the correct bus connections including the ground
line before apply the bus to your analyzer.

Connect your MSB-RS232 analyzer with your bus and start
the software

Symptom Cause Countermeasure

The analyzer becomes
unresponsive

bus short circuit Recheck the correctness of
your bus connection
(signals, ground)

The analyzer does not
record any data

Record not started Start record

Recording of data bytes
disabled

Check record settings

Wrong bus connection Check connection, particular
the green port LEDs

Analyzer stops recording by
itself

Full disk or maximum record
size reached

Reduce recorded events
(signal settings), free disk
space

Analyzer quit working
unexpectedly

USB disabled by Windows
power management

Disable power management,
see E.6

E.3 (Re)Install driver
The MSB-RS232 analyzer integrates a chip from FTDI to communicate with your PC.
This is a widely spread chip. If you have other USB devices connected to your PC using
the same chip a driver mismatch or conflict caused by different driver versions cannot
be ruled out.

E.3.1 Remove driver
To be on the safe side, first remove all existing drivers for this chip from your Window
systems before installing it again.
You will find the appropriate driver uninstaller on the IFTOOLS CDROM in section
Driver & Tools. Click Interactive deinstallation.
Optional you can visit our download page and input CDMUninstaller in the search

322

https://www.iftools.com/download

E.3. (RE)INSTALL DRIVER

field of the page.
After you have downloaded the zip archive file, unpack it and run the program CDMuninstallerGUI.exe,
possibly as admin.

Please note! Disconnect the analyzer before starting the dri-
ver deinstallation!

The IFTOOLS analyzer are using either a chip with the USB product ID 6001 or 6014,
(the Vendor ID 0403 stands for FTDI). So add both to the device list of the uninstaller as
shown above in the right picture. Then click the ’Remove Devices’ button.
The program displays a little message box when the action was completed. You can
ignore any message like ’Failed to remove device...’ because it just means, that the
driver was already removed.

E.3.2 Install driver
There are several ways to install the proper device driver.

1 Automatic installation by Windows (needs an active Internet connection)

2 Installation from the IFTOOLS CDROM or an IFTOOLS USB stick

3 Install driver from other sources

Automatic installation by Windows
This is the easiest way. After you have removed the old driver(s), just connect your ana-
lyzer with your PC and let do Windows the rest. The driver installation may need some
minutes and depending on your Windows version you might get a hint what’s going on.
But to be sure, open the device manager (see E.7 and expand the ’Ports (COM & LPT)’
list entry.

When the installation is complete (either indicated by a short message or an new entry
in the ’Ports (COM & LPT)’ list, you can start the analyzer software.

Installation from CDROM or USB stick
Insert the IFTOOLS CDROM or plugin the IFTOOLS USB stick. New Windows versions
will ask you to allow the access to the medium instead of starting the IFTOOLS Installa-
tion Wizard automatically. In this case grant permission and run the setup.exe in the
root directory of the CDROM or USB stick manually.

323

ANHANG E. WINDOWS TROUBLE-SHOOTING

Select ’Driver & Tools’ in the left column as shown in the picture above. The IFTOOLS
Installation Wizard provides you with relatively new and tested driver versions for all kind
of Windows OS (32 and 64 bit).
Just click the appropriate ’Install driver...’ link to start the installation.

Install driver from other sources
FTDI provides the always newest driver on their VCP drivers page. We recommend to
download the setup executable because it allows you a more or less automatic driver
installation just by executing this package.
Another source for the driver is the IFTOOLS driver page. Here too you can chose
between an executable driver package (Setup Exe) or the standard driver package for
use with the Windows device manager.
After download start the installation by executing the driver setup exe or select the driver
package from within the device manager.

E.4 Helpful program arguments
The analyzer software, particularly the program responsible for the communication with
the analyzer device (the control program) features some special parameters to affect
the device detection and firmware transfer.
In normal cases you don’t need to know them. The default settings handle the device
access pretty good. These parameters might come handy when a functional analyzer
was not detected or the transfer of the firmware fails.
To start the analyzer software with additional parameters open a command shell (or
command prompt).

E.4.1 Analyzer not found
If the analyzer was not found pass it’s serial number as an additional parameter --serno=MSBxxxxx
where MSBxxxxx is the serial number. You will find the serial number on the bottom ca-

324

https://ftdichip.com/drivers/vcp-drivers/
https://www.iftools.com/download/index.en.php?topic=drivers

E.5. PLEASE HELP US WITH CONFLICTING DEVICES

se:

Analyzers of the third generation come with a bar code for the serial number. In this
case replace the xxxxx with the 5 last digits of the bar code number.

E.4.2 Firmware transfer error
That the software reports a firmware transfer error (the analyzer was detected but can-
not be initialized) is rather rare and almost depends on the PC hardware. You can slow
down the firmware transmission with the parameter --reduce-transfer-speed=speed
Allowed values for speed are 0...99.
The following example transfers the analyzer firmware with the lowest speed:

You will find an detailed description of all available parameters in the manual in chapter
7.15. If necessary, you can apply the critical parameters to the software start icon. This
is explained in chapter 7.12.

E.5 Please help us with conflicting devices
The firmware loader uses the information which is collected in the USB enumeration
procedure to detect all serial ports connected to a MSB-analyzer.
Because of the manifold combinations of existing USB devices and drivers we can not
exclude the possibility that in rare cases the program does not detect the analyzer cor-
rectly. To regard these situations in the further program development we need your
active help.
Open a command shell (DOS box) and change to the installation directory. Enter the
following command:

msb_serv.exe --verbose

The --verbose parameter forces the program to store a report file (AnalyzerScan.txt)
with information concerning the internal analyzer detection on your desktop. Just send
this file afterwards to support@iftools.com.

E.6 Disable USB power management
The analyzer device loses its connection and stops working unexpectedly. Most of the
time the analyzer LEDs goes off too. This happens in particular when using a Notebook

325

mailto:support@iftools.com?subject=Analyzer detection

ANHANG E. WINDOWS TROUBLE-SHOOTING

or Laptop.
The reason: To preserve power, the Microsoft Windows OS tries to disable USB (ports)
when a device is idle. Under certain circumstances this function does not work properly
and causes an USB devices to fail to respond when called. To resolve this issue, disab-
ling power management on the USB hub is an appropriate means. Use the following
steps for this:

1 Open the Device Manager, see E.7

2 Double-click the Universal Serial Bus Controllers branch to expand it.

3 Right-click USB Root Hub, and then click Properties.

4 Click Power Management.

5 Deselect Allow the computer to turn off this device to save power.

6 Repeat Steps 5 through 7 for each USB Root Hub.

7 Click OK, and close Device Manager.

8 Reboot you system

E.7 Windows Device Manager
Even if the design and the task of the device manager remains unchanged through the
last 20 years every new windows version makes it a little bit harder to find it. Presumable
to protect the system against incorrect hardware settings caused by the user. Truth is
that in normal circumstances a normal user rarely have a need for the device manager.
Nevertheless it is the first place to look at when something - especially some device -

refuses to work. Luckily the shortcut to start the device manager by a single command
remains the same since Windows XP. Just press:

Windows Key + R

In the just opening dialog input: devmgmt.msc and press Enter or click OK.

E.8 Other problem(s)
Your problem isn’t listed here!
In case of problems or questions do not hesitate to send us a mail under: support@iftools.com.
Please do not forget to inform us about your software and system (Windows version,
Service Pack, 32/64 Bit System) as also a detail description of your problem.
Also don’t forget to provide the serial number of your analyzer (you will find it on the
bottom case).

326

mailto:support@iftools.com?subject=analyzer

F
Linux Trouble-Shooting

This chapter gives you some hints in case the analyzer device is
not detected by the software or does not communicate properly
with it afterwards. If you are running Windows, see the according
chapter Windows Trouble-Shooting.

If a problem arises, first separate your MSB-RS232 analyzer from any RS232 bus and
disconnect it from the PC. Then check:

1 Is the analyzer got hot?

2 Shows the analyzer any signs of damage?

If you can deny both questions following the instructions in the table below.
Should the problem persist, there may be a malfunction. In this case or if your analyzer
shows other signs of damage please contact IFTOOLS and hold ready the serial num-
ber of your device. The number sticks on the bottom of the housing. The best way to
reach us is via email at support@iftools.com.

F.1 Check analyzer connection
All standard Linux kernels innately contain the necessary driver module which is nee-
ded to communicate with the analyzer. Nevertheless you can be trapped by the lot of
different Linux variants and their differing implementations (especially user and group
permissions) which may make the correct functioning difficult.
The following tests are intended to check the connectivity of your analyzer with your PC.

Reconnect your MSB-RS232 with your PC but leave the bus
ports open!

Symptom Cause Countermeasure

Device LEDs do not light up Broken USB cable or USB
port

Exchange the USB cable,
use a different USB port/hub

Defective analyzer Exchange device

Analyzer is not detected
(Program cannot find device)

Missing permission Check your permission, see
F.3

Missing or invalid udev rule Reinstall udev rule, see F.4

Installed Braille driver Remove Braille driver, see
F.5

327

mailto:support@iftools.com?subject=Analyzer failure

ANHANG F. LINUX TROUBLE-SHOOTING

USB enumeration error Check device detection log,
see F.7

Other reasons Check system log, see F.8

Firmware transmission fails Not reliable USB cable Exchange USB cable

Transmission error Reduce transmission
speed/timeout, see F.6

Defective analyzer Exchange device

All LEDs flash red after
firmware transfer

EEPROM checksum error Contact IFTOOLS, see F.9

A correctly connected and functional MSB-RS232 (firmware loaded successfully) is in-
dicated by flashing both red LEDs alternately.

F.2 Check analyzer bus connections
As soon as you connect your analyzer with a bus system (either a small test setup or
a whole industrial field-bus) your analyzer becomes part of a greater system. This may
include the flow of compensatory currents though your analyzer or voltage surges on
the data lines and may affect its proper working, even can damage the analyzer.
So please make sure that you made the correct bus connections including the ground
line before apply the bus to your analyzer.

Connect your MSB-RS232 analyzer with your bus and start
the software

Symptom Cause Countermeasure

The analyzer becomes
unresponsive

bus short circuit Recheck the correctness of
your bus connection
(signals, ground)

The analyzer does not
record any data

Record not started Start record

Recording of data bytes
disabled

Check record settings

Wrong bus connection Check connection, particular
the green port LEDs

Analyzer stops recording by
itself

Full disk or maximum record
size reached

Reduce recorded events
(signal settings), free disk
space

F.3 Check your permission
Linux handles the analyzer as a serial USB device like /dev/ttyUSBx and you need
read/write permissions to access the device. Except for root only members of the group
dialout (Debian based systems like Ubuntu) or uucp (SuSE) are allowed to do this.
Open a terminal (with an connected analyzer) and type:

ls -l /dev/ttyUSB*

You will get something similar like this:

crw-rw---- 1 root dialout 188, 0 2020-08-26 14:47 /dev/ttyUSB0
crw-rw---- 1 root dialout 188, 0 2020-08-26 14:47 /dev/ttyUSB1

Now check your group memberships by input the command:

328

F.4. INSTALL UDEV RULE

groups

The following result indicates, that you are member of your own group (indicated as
YOUR_USER_NAME), the groups cdrom, floppy, audio, video and plugdev. But your
are not member of the required group dialout (or uucp) which you need to access the
analyzer device.

YOUR_USER_NAME cdrom floppy audio video plugdev

To add yourself to the group dialout (or uucp) you must execute the following command
via sudo. (In case you have not sudo rights, ask your system administrator). SuSE users
must replace dialout with uucp!

sudo adduser YOUR_USER_NAME dialout

Please note! You have to logout and new login first until the changes are available. A
reboot is not necessary.

F.4 Install udev rule
Beginning with version 5.0 the analyzer access via a virtual serial port was replaced by
a direct USB access (FTDI d2xx). This change highly increases the data transfer rate
and is mandatory for the newest analyzer generation (PLUS types).
Unfortunately both kinds of device accesses are mutually exclusive, which means: You
cannot perform a direct USB access via FTDI d2xx if the device is registered to the
kernel as virtual serial port (/dev/ttyUSBx).
An proper udev rule is needed to exclude an analyzer device from this registration as
soon as the kernel detects it. Normally the rule is installed during the software installa-
tion and you can check it with:

ls -l /etc/udev/rules.d

In a Linux system with a working analyzer you will see something like this:

-rw-r--r-- 1 root root 262 Jan 12 14:23 10-iftools-msb.rules
-rw-r--r-- 1 root root 620 Feb 23 2016 70-persistent-net.rules
-rw-r--r-- 1 root root 58549 Jan 17 2019 70-snap.core.rules
-rw-r--r-- 1 root root 984 Mar 4 16:10 70-snap.telegram-desktop.rules

Important is the file 10-iftools-msb.rules. If it does not exist, open a terminal and
cd (change working directory) to the installation directory of your analyzer software.

cd ~/msb-5.0.9
sudo ./udev-install.sh

A correct udev rule for the IFTOOLS analyzers looks like:

1 # 10− i f t o o l s −msbc . ru l es
2 #
3 # Apply the new ru les w i th : sudo udevadm t r i g g e r
4 ATTRS{ idVendor }=="0403" , \
5 ATTRS{ idProduct }=="6001|6014" , \
6 ATTRS{ manufacturer }=="IFTOOLS " , \
7 MODE="0660" , \
8 GROUP=" d i a l o u t " , \
9 RUN+=" / b in / sh −c ’ echo −n %k : 1 . 0 > / sys / bus / usb / d r i v e r s / f t d i _ s i o / unbind ’ "

This rule is applied to all USB devices with a FTDI chip (vendor ID 0403) and a certain
chip type used in the analyzers (Product ID 6001 or 6014). To make sure, that no other

329

ANHANG F. LINUX TROUBLE-SHOOTING

devices with the same chip configurations are affected, the rule checks the manufactur-
er (IFTOOLS) too.

You can test the correct operation of the rule by open a terminal, then (re)connect your
analyzer and input:

dmesg

Here the kernel detects a new USB device (as an example our MSB-RS485-PLUS) and
disconnected it from ttyUSB2 so it is free for the direct d2xx access.

F.5 Remove Braille driver
You have the correct permissions for accessing the /dev/ttyUSBx device and the ac-
cording udev rule is installed and works properly. Anyhow the analyzer wasn’t detected
by the software.
Be sure, that you don’t have an installed Braille driver (Braille is a tactile writing system
used by people who are visually impaired). Disconnect and connect the analyzer again.
Open a console and input:

dmesg

If the output displays something like this:

Detected FT232BM Feb 11 16:14:59 sd kernel: [1575.765756] usb 3-2:
FTDI USB Serial Device converter now attached to ttyUSB0 Feb 11
16:14:59 sd kernel: [1575.881392] usb 3-2: usbfs: interface 0 claimed
by ftdi_sio while ’brltty’ sets config Feb 11 16:14:59 sd kernel: [
1575.885485] ftdi_sio ttyUSB0: FTDI USB Serial Device converter now
disconnected from ttyUSB0

a Braille driver is part of your system. If you have no need for a Braille device, please
remove it from your system. On Debian based systems (Ubuntu) for instance with:

sudo apt-get remove brltty

F.6 Helpful program arguments
The analyzer software, particularly the program responsible for the communication with
the analyzer device (the control program) features some special parameters to affect
the device detection and firmware transfer.
In normal cases you don’t need to know them. The default settings handle the device
access pretty good. These parameters might come handy when a functional analyzer
was not detected or the transfer of the firmware fails.
To start the analyzer software with additional parameters open a terminal and cd (change
working directory) into the analyzer software installation directory (mostly $HOME/msb-7.0.2).

330

F.7. PLEASE HELP US WITH CONFLICTING DEVICES

F.6.1 Analyzer not found
If the analyzer was not found pass it’s serial number as an additional parameter --serno=MSBxxxxx
where MSBxxxxx is the serial number. You will find the serial number on the bottom ca-
se:

./msb_serv -nMSBxxxxx

Analyzers of the third generation come with a bar code for the serial number. In this
case replace the xxxxx with the 5 last digits of the bar code number.

F.6.2 Firmware transfer error
That the software reports a firmware transfer error (the analyzer was detected but can-
not be initialized) is rather rare and almost depends on the PC hardware. You can slow
down the firmware transmission with the parameter --reduce-transfer-speed=speed
Allowed values for speed are 0...99.
The following example transfers the analyzer firmware with the lowest speed:

./msb_serv -r99

You will find an detailed description of all available parameters in the manual in chapter
7.15. If necessary, you can apply the critical parameters to the software start icon. This
is explained in chapter 7.12.

F.7 Please help us with conflicting devices
The firmware loader uses the information which is collected in the USB enumeration
procedure to detect all serial ports connected to an IFTOOLS analyzer.
Because of the manifold combinations of existing Linux distributions and USB devices
we can not exclude the possibility that in rare cases the program does not detect the
analyzer correctly. To regard these situations in the further program development we
need your active help.
Open a command shell (terminal) again and change to the installation directory. Enter
the following command:

./msb_serv --verbose

The --verbose parameter forces the program to store a report file (AnalyzerScan.txt)
with information concerning the internal analyzer detection on your desktop. Just send
this file afterwards to support@iftools.com.

F.8 Check system log with dmesg
The Linux kernel produces a lot of useful information when detecting a new USB device.
You can always check the latest (newest) information (stored in a kernel ring buffer) with
the command:

dmesg

Just reconnect the analyzer and take a look into the dmesg output. An functional analy-
zer must always trigger some new lines in the log.
You can store the whole output with:

dmesg > log.txt

In doubt, just send this output to support@iftools.com

331

mailto:support@iftools.com?subject=Analyzer detection
mailto:support@iftools.com?subject=analyzer

ANHANG F. LINUX TROUBLE-SHOOTING

F.9 Other problem(s)
Your problem isn’t listed here!
We are very much interrested that our software can be used under Linux without pro-
blems. Because of the large numbers of different Linux distributions this is not always
easy. Therefore:
In case of problems do not hesitate to send us a mail under: support@iftools.com Plea-
se do not forget to inform us about your software and kernel version, 32/64 Bit system,
Linux distribution, desktop environment and a detail description of your problem.

332

mailto:support@iftools.com?subject=analyzer

Glossar

Notation Description
CSV Comma Separated Values, Comma Separated Va-

lues, text file format in which the content of single
data sets are stored in independent lines, separated
by commas. 53

ETX End of Text, in the ASCII character set defined as hex
0x03. ETX marks the end of a message or datagram.
85

FIFO First In, First Out, Datenpuffer Data buffer for storage
of incoming data, working principally like a waiting
queue. The first received and stored element is first
read out. 2

Firmware Firmware describes the software contained in an
electronic device which is responsible for its functi-
on. Firmware can be a fixed and unchangeable part
of the hardware or can be loaded into the device be-
fore the first start. 21

Jitter Clock jitter in the transferred digital signals, evoked
by slight accuracy modulations of the transfer clock.
155

Lua Lua is a dynamically typed language intended for
use as an extension or scripting language. By inclu-
ding only a minimum set of data types, Lua attempts
to strike a balance between power and size. 50

Record depth The number of maximum events or samples which
are contained in the signal recording is called recor-
ding or storage depth and depends on the available
storage medium. 155

RTF A document file format developed by Microsoft for
cross-platform document interchange. 53

Stop bits One or more stop bits guarantee that the data line is
in the idle state (mark) after sending of a data byte
and that the receiver can synchronize with the start
bit (space) of the next following data byte. 1

STX Start of Text, in the ASCII character set defined as
hex 0x02. STX marks the start of a message or da-
tagram. 85

333

Glossar

Notation Description
Timebase The time duration which corresponds to a grid (10

pixel). The lower the time base the higher the time
resolution of the display. The lowest time base in the
SignalView is 500ns, which corresponds to 50 ns per
pixel. 157

UART Universal Asynchronous Receiver Transmitter. Elec-
tronic element to send or receive data over a serial
data line. 2

334

Index

Absolute Time, 56
Analyser

multiple, 33
Analysis tools

see Views, 30

base16
decode, 207
encode, 207

Baudrate
Jitter, 155

box.setup, 130
box.space, 130
box.text, 131
Break

display, 49
search, 59, 77

Break error, 50

checksum
crc16_bacnet, 212, 213
crc8_bacnet, 211
dnp3, 213
kermit, 213
lrc, 214
modbus, 214

config.setmaxop, 215
Control display

active lines, 30
PC connection, 30
recording capacity, 29
toggle information, 29

Control program
parameter, 35
Short commands, 35
Special parameters, 38

data
at, 66
cursorcolours, 67

Data input, 267
Data logging, 268
Data View, 49

copy section, 53
export section, 53
Font, 55
Goto address, 52
save section, 53
selection, 52
Short commands, 71
Show control chars, 55

Datagram
displaying, 98

Datenmonitor

see Data View, 49
debug

clear, 68, 132
print, 68, 132
resume, 68, 133
summarize, 69, 133
suspend, 69, 134
timeprompt, 70, 134

Decals, 261
delete, 263
flip horizontally, 263
insert, 261

Displays
see Views, 40

event
data, 134
dir, 135
isbreak, 135
level, 135
number, 136
time, 136

Event View, 73
export selection, 81
select lines, 80
Short commands, 84
switch columns on/off, 74
Tastenkürzel, 175

Firmware
Loading, 21

Frame error, 50
Framing

display, 49
search, 59, 77

Input leves, 25

Ledtester, 47
show level notation, 47

LevelFinder, 73
linestates

changed, 137
count, 137

Loopback, 260

Measure time distances, 83
MultiProcess architectur, 39

overrun allowed executions, 215

Parity
display, 49
search, 59, 77

Parity error, 50

335

INDEX

Program settings, 44
Project

last opened, 32
load, 44
save, 31, 44

Projekt, 43
Protocol

autodection, 25
protocol

bitpause, 219
bytepause, 219
databits, 219
parity, 220

Protocol Templates
define, 90
splitting into datagrams, 92

Protocol templates
Import template, 65, 91
language syntax, 91

Protocol View, 85
Font, 148
selection, 88
short keys, 151

Protocols, 86
ProtocolView

see Protocol View, 85

Record
open, 32
pause, 28
save, 31
start, 28
starting automatically, 33
stop, 28

record
analyzer, 216
buswiring, 216
signalnames, 217
starttime, 217

Record mode, 26
continuous, 26
Fifo, 26

Region, 167
move in view, 168
remove, 168
rename, 168
select, 53, 80, 161
switch on/off, 167

ring buffer, 26

Schematics, 269
Scope display, 156
sequences

get, 138

Session
laod, 32
see Project, 31

session, 43
shared

get, 139
set, 139

Signal level
displaying, 156
search duration, 79
search for changes, 79
search level state, 76

Signal line
selection, 26

Signal name
rename, 25

Signal tapping, 268
Signal View, 155

Cursor, 161
Selection, 161
short keys, 165
size distance, 161
undo zooming, 158
Zooming view, 158

Signalmonitor
see Signal View, 155

string
dump, 217

String searching, 56
Switch Editor, 259

Connections, 264
error messages, 266
Factory settings, 270
Licensing, 269
Short commands, 271
Text input, 263

Telegram
see Protocol, 86

telegram
data, 141
datatime, 142
dir, 142
dump, 143
duration, 143
geterror, 144
isbreak, 144
number, 145
size, 145
string, 145
time, 146

telegrams
at, 147

Time base, 157

336

INDEX

Time distance
between data bytes, 55

Time distances
search, 58

transmission
baudrate, 218

Transmission errors, 56
search, 59, 77

uninterruptable analysis, 19
User request

unsaved data dialog, 28

Views, 40
autoscroll, 40
copy, 42
Default settings, 42
locked, 40
synchronize, 39

W232 cable, 319

337

	Analysing of RS232 connections
	Special serial driver
	Y-Cable
	Y-Cable with combined TxD and RxD line
	X-Cable with separate TxD and RxD lines

	Sampling

	MSB-RS232 Analyzer
	Advantages of a hardware solution
	Innovative software concept
	Application fields

	Features & Benefits
	Specifications
	Program Installation
	Installation under Windows
	Installation under Linux
	Manual installation under Linux
	Installation for all users

	Program Updates

	Connection of the analyser
	RS232 connectors
	RS232 signal levels
	Control LEDs
	Green Leds
	Red Leds

	Uninterruptable analysis

	Program start
	User Interface
	Configure a record
	Transmission setup
	Signals
	Record mode
	Autosave
	General

	Start a record
	Status display
	Display I
	Display II
	Display III

	The analysis tools
	Save a recording
	Save a session as a project
	Open an earlier recording
	Open an earlier session (project)
	Last opened recordings and projects
	Drag and drop
	Connecting multiple analysers
	Automatical start after computer boot
	Activate the autostart feature under Windows
	Activate the autostart feature under Linux

	Short commands
	Additional program arguments
	Special program parameters

	The MultiView design
	Synchronization
	Follow (autoscroll)
	Locked (fixed)
	Linked

	Views (displays)
	Virtual Ledtester
	DataView - Data Monitor
	EventView - Event Monitor
	ProtocolView - Protocol Monitor
	SignalView - Signal Monitor
	Regions

	Copy Views
	Default settings for Views

	Session management
	Projects
	Store and reload projects
	Automatic storing of a session

	The virtual Ledtester
	The toolbar

	The Data View
	User Interface
	Display of data errors
	Synchronizing
	Data direction
	Addressing the window content

	Data selection
	Copy and Paste
	Save data selection
	Export a data selection

	Settings
	Columns and data format
	Coloring data
	Change the font

	The data inspector
	Searching the record
	Pattern search
	Search for time distances
	Search for transmission errors

	Integrated Lua
	How does it work?
	Sorted results
	Select and run a Lua script
	Script errors
	Debugging
	Template file location
	Import a template
	How can I remove waste scripts
	Limitations

	DataView specific Lua extensions
	The data module
	The debug module

	The toolbar
	Short commands

	The Event View
	User Interface
	Each line is one event
	All event types at a glance
	Signal alterations

	Navigation through the event list
	Event search with the LevelFinder
	Enter a search pattern
	Formulate a level condition
	Formulate a data error
	Formulate a data value

	Search input and search
	Search for signal changes
	Searching with time specification

	Mark a selection
	Save a selection as a region
	Export a selection as CSV file

	Measure time distances
	The toolbar
	Short commands

	The Protocol View
	User Interface
	Telegram window
	Synchronizing
	Data direction
	Open an identical view
	Pin your settings
	Goto a given telegram number
	Filter control
	Choosing a range

	Protocol templates
	Select a protocol template
	Modify a protocol template
	Individual protocol setup
	Write a new template
	Template file location
	Import a template

	Template language syntax
	Splitting the data stream into telegrams
	Individual displaying of the datagrams

	Filtering
	Show and hide (filter) complete telegrams
	Choose between different telegram display formats

	New filter mechanism
	Individual Filter dialogs
	Export Telegrams
	How the program determines the export fields
	The export dialog
	Export as CSV file
	Export as HTML
	Export as text
	Export as Latex
	Special notes about the caption labeling

	ProtocolView specific Lua extensions
	The box module
	The debug module
	The event module
	The linestates module
	The sequences module
	The shared module
	The telegram type
	The telegrams module

	Settings
	Show additional telegram information
	Change the font
	Set an individual background
	Lua compatibility

	The Toolbar
	Short commands
	Alterations to former versions
	Incompatible changes
	Obsolete functions and modules

	The Signal View
	Signal representation
	Navigation
	Navigation and zooming by mouse wheel
	Shift with the hand cursor

	The time base
	Undo and Redo
	Signal control field
	Remove or hide a signal
	Signal colour
	Data overlay
	Invert signal
	Rearrange signal order

	Settings dialog
	Common settings
	Graphical effects

	Cursor operating
	Signal selection
	Regions

	Measure data frames with the frame ruler
	Adjust the data frame ruler

	Synchronizing
	The toolbar
	Short keys

	Regions
	Switch regions on/off
	Remove a region
	Rename a region
	Move regions into view
	Region storage
	Region properties

	The Editor
	Open the editor
	Start with a new script
	Interactive coding
	Lua script errors

	Highlight individual keywords
	Find
	Find and replace
	Code folding
	Editor settings
	Colour wizard
	Script files location
	Editor short keys

	An introduction to Lua
	Getting started
	Using functions
	Function with multiple results
	Processing and manipulating strings
	Data structures in Lua
	Reuse code with Lua modules

	The Lua language
	Lua is case-sensitive
	Whitespaces and line ends
	Comments
	Types and values
	Numbers
	Integer versus floating point
	Hexadecimal constants
	Floating point constants
	Booleans
	Strings
	Escape sequences in strings
	nil

	Tables
	Discontinuous tables with holes
	Iterate through tables
	Sorting tables

	Identifiers
	Keywords
	Variables
	Assignment
	Global and local variables

	Operators
	Arithmetic operators

	Bitwise operators
	Conditional operators
	Logical operators
	String concatenation operator
	The length operator
	Precedence

	Control structures
	if then else
	while
	repeat
	Numeric for
	break

	Functions
	Function call
	Function definition
	Recursive function calls

	Modules
	Standard modules

	Lua restrictions
	Lua References

	Lua analyzer extensions
	Modules overview
	Common extensions for all Views
	The base16 module
	base16.decode
	base16.encode

	The bit32 module
	The functions bpack and bunpack
	string.pack and string.unpack
	The checksum module
	checksum.crc8_bacnet
	checksum.crc16_bacnet
	checksum.crc16_ccitt_kermit
	checksum.crc16_df1
	checksum.crc16_dnp3
	checksum.lrc
	checksum.crc16_modbus

	The config module
	The record module
	record.analyzer
	record.buswiring
	record.signalnames
	record.starttime

	The string dump extension
	string.dump

	The transmission module
	transmission.baudrate
	transmission.bitpause
	transmission.bytepause
	transmission.databits
	transmission.parity

	Lua modules for individual views

	Lua Protocol dialogs
	How does it work?
	The dialog framework
	Add a template dialog
	Add widgets elements to your dialog
	Apply the user settings
	Passing data between dialog and script
	Refresh or reload
	Defining element action handlers
	Initialize dialog variables
	Dialog settings
	Save dialog settings between sessions

	More positioning and interaction
	Advanced callbacks

	Update existing widgets
	Further examples
	Supported Dialog elements or widgets
	Named parameters
	Common widget parameters
	Button
	CheckBox
	Choice
	Label
	Line
	RadioBox
	Spacer
	SpinCtrl
	Table
	TextCtrl

	Functions dealing with widget elements
	Clear
	Enable
	GetPosition
	GetValue
	IsEnabled
	SetValue
	SetDialogSize
	SetTitle

	Lua modules
	Writing a module
	Module path

	The Switch Editor
	User Interface
	Switching signals and more
	Input modi
	Edit mode
	Insert a new decal
	Available switching elements
	Select decals and connections
	Deleting of decals and connections
	Flip decals horizontally
	Text input
	Limited resources
	Undo/Redo mechanism

	Connection mode
	Connection rules
	Adding a connection
	Branches
	Move a connection
	Delete a connection

	Execution mode
	Switching errors

	Input and output elements at port A and B
	Data input and recording
	Data logging
	Signal tapping
	Reset to default/factory settings
	Load and save schematics
	Licensing
	Buy a license

	The toolbar
	Short commands

	Synchronize two analyzers
	 Technical requirements
	Master Slave operation
	Establish a synchronous record
	Analyse a synchronous record
	Synchronize more than two analyzers
	Conclusion
	Synchronous recording
	Synchronous analysis

	Commandline API
	Combine the programs as a tool chain
	Data source
	Manipulators
	Data sink
	Some examples

	Record data with msb_record
	Connection settings and events
	Usage in your own application
	Remote control
	Synchronous recording with two or more analyzers
	Remote control a synchronous record
	msb_record program parameters
	Digital IO setup parameter
	Transmission parameters

	Formatted output with msb_format
	Output of any character
	File output
	Format parameters
	User defined date and time
	msb_format program parameters

	Filtering data output with msb_filter
	Filter data
	Filter certain signal events
	Filter a given record part
	msb_filter program parameter

	Split records with msb_split
	Split existing record files
	Splitting the current recording from msb_record
	Keep only a given number of records
	msb_split Program Parameter

	Trigger a record with msb_trigger
	Edit a trigger script
	Define a trigger condition
	Conditional start of a record with pre and post-trigger
	Conditional output of an existing record file
	Scan a record file for certain events
	One script for scan and trigger
	Multiple triggering
	Provided Lua modules
	msb_trigger Program Parameter

	One config file for all

	ASCII character table
	Baudrate measuring
	Colors
	RGB short form
	RGB long form
	Predefined color names
	Grey colors
	Basic colors
	Extended colors

	Uninterruptable analysis with W232-Cable
	Windows Trouble-Shooting
	Check analyzer connection
	Check analyzer bus connections
	(Re)Install driver
	Remove driver
	Install driver

	Helpful program arguments
	Analyzer not found
	Firmware transfer error

	Please help us with conflicting devices
	Disable USB power management
	Windows Device Manager
	Other problem(s)

	Linux Trouble-Shooting
	Check analyzer connection
	Check analyzer bus connections
	Check your permission
	Install udev rule
	Remove Braille driver
	Helpful program arguments
	Analyzer not found
	Firmware transfer error

	Please help us with conflicting devices
	Check system log with dmesg
	Other problem(s)

