
Asynchronous Data Transmission Page 1/4 IFTOOLS GmbH

Asynchronous Data Transmission
Michael Hungershausen, www.iftools.com

November, 1st, 2019

he “asynchronous” data transmission is
a way to send and receive data over a
serial bus when no data cock is availab-

le in parallel. The data is sent over the lines in a
bit rate clock which shall be the same in the
sender and receiver.
The asynchronous data are simply bits on the
line which have to be assigned to the real data
payload. Characters and bits are sent one by
one, the number of payload data bits are fixed.
The assignment is done in the UART (Universal
asynchronous Receiver Transmitter).
The following chapter describes the well defi-
ned protocol.

Physical appearance

Signal level
The standard line code for the transmission is
NRZ-L (No Return to Zero, Level). This means
that both logic values are simply represented
by two different bus signal voltages which are
depending on the used transmission standard,
RS232, RS422/485 or others.
The logical values are inverted to the physical
voltages. A logical ’0’ after the UART is output
as a positive voltage or voltage difference, a lo-
gical ’1’ as 0V or a negative voltage difference.
The reason is that logical ’0’ (idle bus condition)
can be distinguished from the power down con-
dition. To achieve this the level converters (e.g.
digital to RS232) invert the level. As a compen-
sation the UARTs invert the logical bit stream
again.

Synchronizing
Due to small differences in the bit rate clock in
both (or more) devices the receiver has to be
re-synchronized with the sender after some bits
to make sure that following bits will be sampled
in about the middle of the bit.
As no timing reference is available within the bit

stream the data have to be supplemented with
definitive information about the beginning and
the end of each byte. This information -additio-
nal start and end bits enclose the data payload-
can be used to synchronize the data sampling
unit to regain the original parallel data.
The start bit drives the bus from idle to active.
This negative going edge is used to synchron-
ize the data sampling unit. The stop bit is used
to get a save return to the idle state with at
least one bit gap to the next possible start bit.
In this way both bits are the source for a suc-
cessful synchronization of the data recovering
unit, but with the disadvantage of additional bit
overhead. This reduces the data throughput to
80% for 8 bit data. Also the bit rates of the sen-
der and receiver must be very close to each
other, the difference should be not more than
1% for each device, 2% together.

Asynchronous data
The data scheme is always the same, the total
bit length per character depends on the quanti-
ty of data, parity and stop bits, called frame.
The bit sequence and number is:
Start Data Extra bit Stop

1 5 to 8 1 or none 1 or 2

Of course the number of bits, which are used
in a specific transmission, must be known to all
attached bus devices. It is the so called low le-
vel transmission -frame- protocol and is descri-
bed by a sequence of characters, representing
the number of data bits, the used parity and the
number of stop bits. One start bit is always ne-
cessary and assumed.
The abbreviation 8N1 means: 8 data bits, No
parity, 1 Stop bit. This is the most used proto-
col.
Minimum number (5N1) is: 1+5+0+1 = 7 bits.
Maximum number (8X2) is: 1+8+1+2 = 12 bits.
More than 12 Bits altogether per frame are not

T

http://www.iftools.com


Asynchronous Data Transmission Page 2/4 IFTOOLS GmbH

allowed, the limits for the bit rate variation
would be to narrow. This is reserved for syn-
chronous transmission with increased re-syn-
chronization capability.

These are the bits in detail:

Start bit
The start bit is the necessary transition from
idle ’0’ to active ’1’ which synchronizes the bit
counter in the receiver, it can not be left. So the
stop bit is logical ’1’. There is nothing more to
say about it.

Data bits
Standard UARTs are connected to the micro-
processor via byte interfaces, so sending of
more than 8 bits at a time is not possible in a
single access. That limits the single data to 256
states, but of course bytes can be linked to
words and fields in a multiple of 8 bit. Sending
8 bits seems to be natural for a byte connec-
tion, but why using less than 8 bits in the data
stream?
There is an easy explanation. With every bit,
which is not transferred, the throughput is inc-
reased by 10% compared to a 8N1 transmis-
sion. Especially for older transmission devices
like Telex with traditionally low transmission ra-
tes this can be of big advantage. You can trans-
fer the ASCII character set with 7 bits (128
states) or reorganized with only 6 bits (64
states). A machine might be controlled with 32
commands (5 bits). Less than 5 bits does not
make much sense.
This fact of possible different data sizes is the
reason for another peculiarity of the data bit as-
signment: The data is sent low significant bit
(LSB, Data bit D0) first over the line.
The trick is that if a communication at first
needs only few bits (or states) data can be sent
with reduced length. But if you once need to
transfer more information in more bits you can
increase the bit length without having to reas-
sign the bits. Bit D0 is always at the low end of
the data Byte which is transferred from or to the
microprocessor. Bits which are not used are al-
ways ’0’.

Extra (Parity) bit
The parity bit was once added to check if the
data was correctly received.
Meanwhile this extra bit has a more versatile
status. The following usages are known, each
with an identification letter:
N: None
As the name says... The bit is omitted
P: Parity
This is simply a placeholder for a parity bit
which is either unknown yet or can be set dyna-
mically.
E: Even (Parity)
The parity bit is evaluated in the following way:
All data bits which are ‘1’ plus the parity bit of
the frame are counted, the sum must be a mul-
tiple of 2. Examples:
Data = 11010010 => 4*1 => parity bit = 0 (4*1)
Data = 11011010 => 5*1 => parity bit = 1 (6*1)
O: Odd (Parity)
The inverted parity to Even, the sum of all ones
must be a multiple of 2 + 1. Examples:
Data = 11010010 => 4*1 => parity bit = 1 (5*1)
Data = 11011010 => 5*1 => parity bit = 0 (5*1)
A: Address
This bit has the function to differ between bus
address of a device (‘1’, first byte(s)) and data
information (‘0’, following bytes). In this way de-
vice addressing in the first byte is much faster
than spending an extra data frame for this pur-
pose. The eight data bits plus address bit is al-
so known as “9 bit protocol”
D: Data
The bit is used as a ninth data bit, which is a ra-
re use since the setting of this bit for every byte
takes a lot of time and speed.
M: Mark
The parity bit is set to a fixed ’1’. It is also used
to set the bit when used in the A or D mode.
S: Space
The parity bit is set to a fixed ’0’. It is also used
to reset the bit when used in the A or D mode.
X: undefined
Used for general descriptions. The bit is avai-
lable for whichever purpose.

The necessary subset is N,E,O,M,S which can
be set in a standard UART. The parity setting
(E,O) and detecting is directly done by the
UART hardware.
Setting and recovering the value for A or D ta-
kes a lot of computing power because this is
possible only with the indirect way of setting M,
S and evaluate the parity error flag as descri-
bed in chapter „parity“.



Asynchronous Data Transmission Page 3/4 IFTOOLS GmbH

Stop bit(s)
Like the start bit is necessary to indicate the
start of a frame with the transition from idle to
active the stop bit finishes the frame with a safe
return to idle. So the stop bit is logical ’0’.
Only one stop bit is necessary for correct deco-
ding, the following bit can be the start bit of the
next frame. To give the receiving decoder more
time to transfer the detected byte to its internal
output buffer a further stop bit can be added be-
fore the next start bit.
Generally every further stop bit extends the gap
to the start of the next frame, so these additio-
nal stop bits are simply idle conditions.

Transmission errors
The receiving UART can detect three types of
extraordinary conditions which have to be trea-
ted as errors or additional information. They are
described in their priority. Only the flag with the
highest priority has to be regarded if more than
one erroneous condition occurs.
Before searching for ominous errors make real-
ly sure that all attached bus devices have the
same low level protocol settings, unintended
different settings are the main reasons for an in-
explicable error behavior.

Parity, low priority
If the parity bit is really used as a parity and if
the evaluated parity of the received data does
not fit to the received parity than a parity error is
indicated. The reason is that the single data
bits were not correctly caught, mostly because
of disturbances on the line.
With one parity error you can detect that an odd
number of received bit including the parity itself
is wrong, but you can not assign and correct
the bit(s).
The standard handling is to send an request for
repeating the whole transmission, depending
on the used high level protocol. It is important
for a reliable transmission not to ignore this er-
ror like many program(er)s do because they do
not know how to handle this condition.
If the parity bit is used as an universal address
or data bit (A or D) the handling of this condi-
tion is different. In this case it is not used as an
error flag. The value of this bit must be compu-
ted since the standard UART does not directly
offer the output of the parity bit.
That needs a bit more software handling. The
way to gain the A or D bit is:

Set the parity to Odd or Even generally.
Get the data byte plus the parity error flag.
Evaluate the correct parity from the data.

If no parity error is flagged:
The evaluated parity is the transmitted bit.
If a parity error is flagged:
The evaluated parity is the inverted bit.

Example:
Set the parity to even (8E1)
Get the data: 23h = 00100011b
Evaluate the even Parity: => P=1 (4*1)
No Parity Error: The received bit is ‘1’
Parity Error: The received bit is ‘0’

Framing, middle priority
The framing error is a more serious problem
and has influence on the whole transmission. It
occurs if the receiver awaits a ’0’ stop bit but in-
stead samples a logical ’1’.
If the frame does not return to idle the next start
bit can not be detected and so the receiver will
get out of synchronization for the following fra-
mes. The whole transmission must be thrown
away.
How can this happen if the frames are well defi-
ned? Three reasons are possible.
First, like for the parity error, a disturbance on
the line can lead to an incorrectly sampled logi-
cal value. Second, like mentioned before, the
settings can be different.
But the most difficult to find error is a variance
in the baud rate of sender and receiver. An er-
ror of 5% adds up to 1/2 bit for the 10th bit.
This needs a lot of investigation and good exa-
mination tools.

Break, high priority
A break is present if the line stays in the active
state (logical ’1’, physical ’0’) for more than one
data frame, no stop bit comes.
This state can be reached intendedly or unin-
tendedly. The latter case is caused by a power-
ed off sender, the interface lines are drawn to
ground, the complete communication is halted
and broken down. You can’t have a more se-
rious problem.
But the break can also be a triggered by soft-
ware, it is a settable state in the UART. The
meaning is to generate a special condition for
all receivers to execute predefined sequences,
independent of any transmission. Therefore a
longer minimum time for the break can be spe-
cified to make sure the condition is correctly de-
tected. Also short and long breaks with different
meanings can be used.
The behavior on detecting the break condition
depends on the application. Three types are
mainly used, some more can be implemented:

Resetting the complete device. This affects
not only the interface part but also all inter-



Asynchronous Data Transmission Page 4/4 IFTOOLS GmbH

nal and externally attached hardware like
sensors and actuators. It is like a complete
system restart after power up. If the master
is powered down or up all devices will fol-
low, simply by detecting the break condition.
Resetting the interface. This can be used to
shut down permanent talkers. Also general-
ly useful for restarting in known conditions,
e.g. the interface can be switched to an al-
ternative bit rate by software.
Subdivide data strings. Some high level da-

ta protocols use this special condition to
start or end a sequence of transmitted data.


	Physical appearance
	Signal level
	Synchronizing

	Asynchronous data
	Start bit
	Data bits
	Extra (Parity) bit
	Stop bit(s)

	Transmission errors



